This article describes an advanced breakout trading strategy implemented in Backtrader that identifies low-volatility “squeeze” periods using Bollinger Bands and Keltner Channels, enhanced with a long-term trend filter and volume confirmation. The strategy trades breakouts with momentum confirmation and manages risk with ATR-based trailing stops.
The Filtered Squeeze Breakout Trading Strategy integrates the following components:
Below is the complete Backtrader code for the strategy, including the custom Keltner Channel indicator:
import backtrader as bt
class CustomKeltnerChannel(bt.Indicator):
= ('KeltnerChannel',)
alias = ('mid', 'top', 'bot',)
lines = dict(subplot=False)
plotinfo = (('period', 20), ('devfactor', 1.5), ('movav', bt.indicators.SimpleMovingAverage),)
params def __init__(self):
self.lines.mid = self.p.movav(self.data, period=self.p.period)
= self.p.devfactor * bt.indicators.AverageTrueRange(self.data, period=self.p.period)
atr self.lines.top = self.lines.mid + atr
self.lines.bot = self.lines.mid - atr
class FilteredSqueezeStrategy(bt.Strategy):
"""
An advanced breakout strategy using a single timeframe. It combines a
Squeeze, a long-term trend filter, and a volume confirmation filter.
"""
= (
params # Squeeze detection
'bb_period', 7), ('bb_devfactor', 1.0),
('kc_period', 30), ('kc_devfactor', 1.0),
(# Momentum confirmation
'macd_fast', 7), ('macd_slow', 30), ('macd_signal', 14),
(# Volume Filter
'vol_ma_period', 7),
('vol_multiplier', 1.2),
(# Long-term trend filter
'long_term_ma_period', 30),
(# Risk Management
'atr_period', 7), ('atr_stop_multiplier', 3.0),
(
)
def __init__(self):
self.order = None
# --- All indicators now run on self.data (datas[0]) ---
self.bband = bt.indicators.BollingerBands(self.data, period=self.p.bb_period, devfactor=self.p.bb_devfactor)
self.keltner = CustomKeltnerChannel(self.data, period=self.p.kc_period, devfactor=self.p.kc_devfactor)
self.macd = bt.indicators.MACD(self.data, period_me1=self.p.macd_fast, period_me2=self.p.macd_slow, period_signal=self.p.macd_signal)
self.atr = bt.indicators.AverageTrueRange(self.data, period=self.p.atr_period)
self.vol_ma = bt.indicators.SimpleMovingAverage(self.data.volume, period=self.p.vol_ma_period)
# Long-term MA to replace the HTF filter
self.long_term_ma = bt.indicators.SimpleMovingAverage(self.data, period=self.p.long_term_ma_period)
# --- Trailing Stop State ---
self.stop_price = None
self.highest_price_since_entry = None
self.lowest_price_since_entry = None
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
return
if order.status in [order.Completed]:
if self.position and self.stop_price is None:
if order.isbuy():
self.highest_price_since_entry = self.data.high[0]
self.stop_price = self.highest_price_since_entry - (self.atr[0] * self.p.atr_stop_multiplier)
elif order.issell():
self.lowest_price_since_entry = self.data.low[0]
self.stop_price = self.lowest_price_since_entry + (self.atr[0] * self.p.atr_stop_multiplier)
elif not self.position:
self.stop_price = None
self.highest_price_since_entry = None
self.lowest_price_since_entry = None
self.order = None
def next(self):
if self.order:
return
# --- Filter Conditions ---
= (self.bband.top < self.keltner.top and self.bband.bot > self.keltner.bot)
is_squeeze = self.data.volume[0] > (self.vol_ma[0] * self.p.vol_multiplier)
has_volume_spike
# Trend filter using long-term MA
= self.data.close[0] > self.long_term_ma[0]
is_long_term_uptrend = self.data.close[0] < self.long_term_ma[0]
is_long_term_downtrend
if not self.position and is_squeeze and has_volume_spike:
= self.data.close[0] > self.bband.top[0]
price_breaks_up = self.data.close[0] < self.bband.bot[0]
price_breaks_down = self.macd.macd[0] > self.macd.signal[0]
macd_is_bullish = self.macd.macd[0] < self.macd.signal[0]
macd_is_bearish
# Entry requires alignment with the long-term MA
if price_breaks_up and macd_is_bullish and is_long_term_uptrend:
self.order = self.buy()
elif price_breaks_down and macd_is_bearish and is_long_term_downtrend:
self.order = self.sell()
elif self.position:
# --- Manual ATR Trailing Stop Logic ---
if self.position.size > 0: # Long
self.highest_price_since_entry = max(self.highest_price_since_entry, self.data.high[0])
= self.highest_price_since_entry - (self.atr[0] * self.p.atr_stop_multiplier)
new_stop self.stop_price = max(self.stop_price, new_stop)
if self.data.close[0] < self.stop_price:
self.order = self.close()
elif self.position.size < 0: # Short
self.lowest_price_since_entry = min(self.lowest_price_since_entry, self.data.low[0])
= self.lowest_price_since_entry + (self.atr[0] * self.p.atr_stop_multiplier)
new_stop self.stop_price = min(self.stop_price, new_stop)
if self.data.close[0] > self.stop_price:
self.order = self.close()
The custom Keltner Channel indicator defines a volatility-based channel:
The strategy combines squeeze detection, trend alignment, volume confirmation, and momentum to trade breakouts:
Indicators:
Trading Logic (next
):
Order Management
(notify_order
):
bb_period
,
kc_period
, macd_fast
, macd_slow
,
macd_signal
, vol_ma_period
,
vol_multiplier
, long_term_ma_period
, or
atr_stop_multiplier
to optimize for specific assets or
market conditions.This strategy is designed for markets with periodic low-volatility consolidations followed by strong, trend-aligned breakouts, suitable for assets like forex, stocks, or cryptocurrencies, and can be backtested to evaluate its effectiveness across various timeframes and assets.