
Adaptive Filter Strategy Pack Manual
This guide provides an overview of each trading strategy included in the package,
with descriptions of their objectives, key components, parameters, logic, and notes
on their unique features.

A Note on Backtesting: All strategies presented are for educational and illustrative
purposes. The Python scripts provide a framework for backtesting these concepts. Past
performance is not indicative of future results. Thorough testing, optimization, risk
management, and consideration of transaction costs (slippage, commissions) are crucial
before deploying any trading strategy with real capital. The code snippets included in the
manual are illustrative and extracted from the provided standalone Python scripts.
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1. Adaptive Rectified Linear Filter Strategy
1.1. Overview and Objective
Overview:
This strategy implements an adaptive filter, specifically an Exponential Moving Average
(EMA), where the smoothing period is dynamically adjusted based on market trend strength.
The Average Directional Index (ADX) is used to quantify trend strength. A stronger trend
(higher ADX) results in a shorter EMA period (making the filter more responsive), while a
weaker trend (lower ADX) uses a longer EMA period (making the filter smoother). This
"Adaptive Rectified Linear Filter" (ARL) then serves as a dynamic baseline for generating
trading signals.

Objective:
The primary objective is to trade crossovers of the closing price with this adaptively
smoothed price filter.

1.2. Key Indicators and Components

The strategy relies on several indicators and calculated series:

10.3. Key Indicators and Components
10.4. Script Parameters (Function Arguments for run_vw_aema_backtest )
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A long position is initiated when the previous day's close crosses above the previous
day's filtered price.
A short position is initiated when the previous day's close crosses below the previous
day's filtered price.
The strategy incorporates an ATR-based trailing stop-loss for risk management and
accounts for trading commissions.



ADX (Average Directional Index - adx_col_name ): Measures trend strength.
Calculated using the ta  library.

# ADX Calculation

high = df['High']

low = df['Low']

close = df['Close']

df[adx_col_name] = ta.trend.ADXIndicator(high, low, close,

window=adx_period).adx()

df[adx_col_name].fillna(method='bfill', inplace=True) # Fill initial ADX

NaNs

Normalized ADX ( normalized_adx_col ): ADX values are clipped within a defined
range ( adx_map_min , adx_map_max ) and then normalized to a 0-1 scale. This
normalized value determines the adaptiveness of the filter.

adx_clipped = df[adx_col_name].clip(adx_map_min, adx_map_max)

df[normalized_adx_col] = (adx_clipped - adx_map_min) / (adx_map_max -

adx_map_min)

df[normalized_adx_col].fillna(0, inplace=True)

df[normalized_adx_col] = np.clip(df[normalized_adx_col], 0, 1)

Adaptive EMA Period ( adaptive_ema_period_col ): The period for the adaptive EMA,
interpolated between period_min_filt  (for high ADX) and period_max_filt  (for low
ADX) based on the previous day's normalized ADX.

# High Normalized ADX (strong trend) -> period_min_filt (faster EMA)

# Low Normalized ADX (weak trend) -> period_max_filt (slower EMA)

df[adaptive_ema_period_col] = period_max_filt -

df[normalized_adx_col].shift(1) * (period_max_filt - period_min_filt)

df[adaptive_ema_period_col] =

np.round(df[adaptive_ema_period_col]).fillna( (period_min_filt +

period_max_filt) / 2 ).astype(int)

df[adaptive_ema_period_col] = np.clip(df[adaptive_ema_period_col],

period_min_filt, period_max_filt)

Adaptive Rectified Linear Filter / Adaptive EMA ( filtered_price_arl_col ): This is
the core adaptive filter, calculated iteratively. The smoothing factor Alpha_Adaptive
changes daily based on adaptive_ema_period_col .

df['Alpha_Adaptive'] = 2 / (df[adaptive_ema_period_col] + 1)

df[filtered_price_arl_col] = np.nan

# ... (Seeding the first value) ...

first_valid_alpha_idx = df['Alpha_Adaptive'].first_valid_index()

df.loc[first_valid_alpha_idx, filtered_price_arl_col] =



1.3. Script Parameters
The main configurable parameters are defined at the beginning of the script:

df.loc[first_valid_alpha_idx, 'Close'] # Seed

start_loc_for_ema_loop = df.index.get_loc(first_valid_alpha_idx)

for i_loop in range(start_loc_for_ema_loop + 1, len(df)):

idx_today = df.index[i_loop]; idx_prev = df.index[i_loop-1]

alpha_val = df.loc[idx_today, 'Alpha_Adaptive']

current_close_val = df.loc[idx_today, 'Close']

prev_filtered_price_val = df.loc[idx_prev, filtered_price_arl_col]

if any(pd.isna(val) for val in [alpha_val, current_close_val,

prev_filtered_price_val]):

df.loc[idx_today, filtered_price_arl_col] =

prev_filtered_price_val

else:

df.loc[idx_today, filtered_price_arl_col] = alpha_val *

current_close_val + (1 - alpha_val) * prev_filtered_price_val

df[filtered_price_arl_col].fillna(method='ffill', inplace=True);

df[filtered_price_arl_col].fillna(method='bfill', inplace=True)

Average True Range (ATR - atr_col_name_sl ): Used for calculating the trailing stop-
loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); df['L-PC_sl'] = (df['Low'] -

df['Close'].shift(1)).abs()

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()

# --- Parameters ---

ticker = "ETH-USD"

start_date_str = "2020-01-01"

end_date_str = "2024-12-31"

adx_period = 14

# ADX values to map to period range

adx_map_min = 20 # ADX at or below this gets period_max_filt

adx_map_max = 40 # ADX at or above this gets period_min_filt

# EMA period range for the adaptive filter

period_min_filt = 7 # Faster EMA for strong ADX

period_max_filt = 30 # Slower EMA for weak ADX

atr_window_sl = 14



(Note: TRADING_DAYS_PER_YEAR , verbose , and plot_results  are also present).

1.4. Data Handling

1.5. Trading Logic (within the main backtesting loop)

The strategy iterates daily. Signals are based on the previous day's close versus the
previous day's filtered price. Trades are executed at the current day's Open .

1.5.1. Signal Generation Conditions

A target position ( target_pos ) is determined based on the previous day's relationship
between the close and the adaptive filter:

1.5.2. Entry Conditions

If the target_pos  is different from the current_pos  (position held at the start of the day), a
new trade or a flip is considered. Entry is at today_open .

atr_multiplier_sl = 1.0

commission_bps_per_side = 1.0 # Basis points per side for commission

Data Download: Daily OHLCV data is downloaded using yfinance . User preferences
for auto_adjust=False  and droplevel  are applied.

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (droplevel and column selection logic) ...

df = df[['Open', 'High', 'Low', 'Close', 'Volume']].copy()

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short

# (If target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net for the closing part of

the flip) ...

current_pos = target_pos; current_entry_gross = today_open # Set

new position and entry price



1.5.3. Exit Conditions

The primary exit mechanism is the ATR Trailing Stop-Loss. Positions are also exited if an
opposing signal is generated (flip).

1.5.4. Position Sizing, P&L, and Commission Calculation

if current_pos == 1: # Entering New Long

# ... (calculate pnl_entry_leg_day, set init_ts and

current_ts) ...

elif current_pos == -1: # Entering New Short

# ... (calculate pnl_entry_leg_day, set init_ts and

current_ts) ...

ATR Trailing Stop-Loss Check (highest priority):

# (At the start of the daily loop logic for an active position)

if current_pos != 0 and pd.notna(current_ts) and

pd.notna(current_entry_gross):

exit_price_sl_gross = 0; stopped_out = False

if current_pos == 1 and today_low <= current_ts:

exit_price_sl_gross = min(today_open, current_ts); stopped_out =

True

elif current_pos == -1 and today_high >= current_ts:

exit_price_sl_gross = max(today_open, current_ts); stopped_out =

True

if stopped_out:

# ... (calculate pnl_for_day including commission, set

current_pos to 0) ...

action_this_bar = True # Flag that a stop occurred

Trailing Stop Adjustment (if holding and not stopped):
The stop is updated at the end of the day based on today_close  and today_atr_sl .

# (If holding and not stopped or flipped)

elif current_pos != 0: # Holding

if current_pos == 1:

# ... (pnl_for_day calculation for holding) ...

current_ts = max(current_ts, today_close - atr_multiplier_sl *

today_atr_sl)

else: # current_pos == -1

# ... (pnl_for_day calculation for holding) ...

current_ts = min(current_ts, today_close + atr_multiplier_sl *

today_atr_sl)

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).



1.6. Performance Evaluation
Daily strategy returns are used to compute various performance metrics.

Commissions: A commission rate ( comm_rate_val = commission_bps_per_side /
10000.0 ) is applied to each side of a trade (entry and exit).

When entering a new position (from flat or flip): pnl_entry_leg_day  calculations
subtract comm_rate_val .
When exiting a position (due to stop or flip): pnl_for_day  or pnl_exit_leg_net
calculations subtract comm_rate_val .

# Example for stop-loss P&L

if current_pos == 1: pnl_for_day = (exit_price_sl_gross /

current_entry_gross) - 1 - comm_rate_val 

else: pnl_for_day = -((exit_price_sl_gross / current_entry_gross) - 1) -

comm_rate_val

# Example for new entry P&L contribution for the day

if current_pos == 1:

pnl_entry_leg_day = ((today_close / current_entry_gross) - 1) -

comm_rate_val

P&L Calculation ( Strategy_Daily_Return ): Calculated daily, accounting for
commissions and whether the action was a stop, new entry, flip, or hold.

Cumulative Returns & Alignment: Standard calculation for strategy and buy & hold,
with alignment.
Performance Metrics Function: A loop iterates through strategy and benchmark returns
to print:

Cumulative Return
Annualized Return
Annualized Volatility
Sharpe Ratio
Max Drawdown ( _calculate_max_drawdown_local  helper function is used).

# (Inside the performance metrics loop)

avg_r,std_r=returns_data.mean(),returns_data.std();

ann_r,ann_v=avg_r*TRADING_DAYS_PER_YEAR,std_r*np.sqrt(TRADING_DAYS_PER_Y

EAR);

sharpe=ann_r/ann_v if ann_v > 1e-7 else np.nan;

cum_r=(1+returns_data).prod();

mdd=_calculate_max_drawdown_local(returns_data) # Max Drawdown

calculation

print(f"\n--- {label_name} ---\nCum Ret: {cum_r:.2f}x | Ann Ret: 



1.7. Plotting Results

The script generates six separate plots if plot_results  is true:

1.8. Unique Features & Notes

{ann_r:.2%} | Ann Vol: {ann_v:.2%} | Sharpe: {sharpe:.2f} | Max DD: 

{mdd:.2%}")

1. Price & Adaptive Filter (ARL): Shows Close price, the filtered_price_arl_col , and
active Trailing Stops.

2. ADX Trend Strength: Displays the ADX value along with adx_map_min  and
adx_map_max  lines.

3. Adaptive EMA Period: Shows the calculated adaptive_ema_period_col  over time.
4. Strategy Position: Step plot of Long (1), Short (-1), or Flat (0) positions.
5. ATR for Stop Loss: Plots the atr_col_name_sl .
6. Cumulative Performance (Log Scale): Compares strategy returns to Buy & Hold.

# --- 5. Plotting Results (Separate Figures) ---

if plot_results and not df_analysis.empty and len(df_analysis) > 5:

# Figure 1: Price & Adaptive Filter (ARL)

plt.figure(figsize=(14, 7)); # ... plotting code ...; plt.show()

# Figure 2: ADX Trend Strength

plt.figure(figsize=(14, 7)); # ... plotting code ...; plt.show()

# Figure 3: Adaptive EMA Period

plt.figure(figsize=(14, 7)); # ... plotting code ...; plt.show()

# Figure 4: Strategy Position

plt.figure(figsize=(14, 7)); # ... plotting code ...; plt.show()

# Figure 5: ATR for Stop Loss

plt.figure(figsize=(14,7)); # ... plotting code ...; plt.show()

# Figure 6: Cumulative Performance

plt.figure(figsize=(14, 7)); # ... plotting code ...; plt.show()

Adaptive Filtering: The core feature is the EMA-like filter whose responsiveness
changes with trend strength (ADX). This allows the filter to be quick in fast markets and
smooth in slower ones.
Iterative Calculation: The adaptive filter is calculated iteratively due to the daily
changing alpha, which is uncommon for standard EMA calculations in vectorized libraries
but necessary here.
Commission Modeling: Explicitly deducts commissions per side, providing a more
realistic backtest.
Trend Strength Based Adaptation: Uses ADX not as a direct entry signal, but as a
meta-parameter to control another indicator (the filter).



2. Adaptive Savitzky-Golay Filter Strategy
2.1. Overview and Objective

Overview:
This strategy employs an Adaptive Savitzky-Golay (SG) filter to smooth the price series.
The Savitzky-Golay filter is a type of polynomial filter that can be effective for smoothing data
while preserving features like local maxima and minima better than simpler moving
averages. The "adaptive" nature of this strategy comes from dynamically adjusting the
window length of the SG filter based on recent market volatility conditions.

Objective:
The strategy aims to generate trading signals by identifying crossovers between the closing
price and this adaptively filtered price series. The core idea is that:

2.2. Key Concepts: Savitzky-Golay Filter

The Savitzky-Golay filter is a digital filter that fits successive sub-sets of adjacent data
points with a low-degree polynomial by the method of linear least squares. It's effective for
smoothing a noisy signal to better represent the underlying trend without overly distorting it.
Key parameters for an SG filter are:

In this strategy, the window length is adapted daily.

2.3. Key Indicators and Components
The strategy utilizes several calculated series and functions:

Daily Timeframe: The strategy operates on daily data.

In calm markets (low recent volatility percentile), a smaller SG filter window is used,
making the filter more responsive to price changes.
In choppy markets (high recent volatility percentile), a larger SG filter window is used,
providing more smoothing to filter out noise.
Trades are initiated based on the previous day's close crossing the previous day's SG
filtered price, with an ATR-based trailing stop-loss for risk management and accounting
for commissions.

Window Length: The number of data points used to fit the polynomial. Must be odd.
Polynomial Order: The degree of the polynomial used for fitting. Must be less than the
window length.

Historical Volatility ( volatility_col ): Standard deviation of daily returns over
vol_window .



df[daily_return_col] = df['Close'].pct_change()

df[volatility_col] =

df[daily_return_col].rolling(window=vol_window).std()

Volatility Percentile ( vol_percentile_col ): The rolling percentile rank of the historical
volatility over vol_percentile_window . This value (0.0 to 1.0) indicates how the current
volatility compares to its recent history.

df[vol_percentile_col] =

df[volatility_col].rolling(window=vol_percentile_window)\

.apply(lambda x: pd.Series(x).rank(pct=True).iloc[-1] if not x.empty

and pd.notna(x.iloc[-1]) else np.nan, raw=False)

df[vol_percentile_col].fillna(method='ffill', inplace=True);

df[vol_percentile_col].fillna(0.5, inplace=True)

Adaptive SG Window ( adaptive_sg_window_col ): The window length for the Savitzky-
Golay filter, determined by the previous day's vol_percentile_col . Low volatility
percentile maps to sg_min_window , high percentile maps to sg_max_window . The
adjust_window  helper function ensures the window is odd and respects the polynomial
order.

# Low vol percentile (calm, 0.0) -> sg_min_window

# High vol percentile (choppy, 1.0) -> sg_max_window

df['Adaptive_SG_Window_Float'] = sg_min_window +

df[vol_percentile_col].shift(1) * (sg_max_window - sg_min_window)

def adjust_window(w_float, p_order, w_min, w_max): # Helper function

# ... (logic to ensure odd, within bounds, and > polyorder) ...

return final_w

df[adaptive_sg_window_col] = df['Adaptive_SG_Window_Float'].apply(

lambda w: adjust_window(w, sg_polyorder, sg_min_window,

sg_max_window)

).fillna(sg_min_window).astype(int)

Adaptive Savitzky-Golay Filtered Price ( filtered_price_sg_col ): The price series
smoothed by the SG filter with a dynamically changing window length. Calculated
iteratively using scipy.signal.savgol_filter .

df[filtered_price_sg_col] = np.nan

# ... (logic for start_loc_for_sg_loop and seeding first value) ...

for i_loop in range(start_loc_for_sg_loop, len(df)):

idx_today = df.index[i_loop]

current_sg_window = df.loc[idx_today, adaptive_sg_window_col]



2.4. Script Parameters (Function Arguments)
The core logic is encapsulated in the run_adaptive_sg_filter_backtest  function, which
accepts the following parameters:

if pd.isna(current_sg_window) or i_loop - current_sg_window + 1 < 0

:

df.loc[idx_today, filtered_price_sg_col] =

df.loc[df.index[i_loop-1], filtered_price_sg_col]

continue

price_segment = df['Close'].iloc[i_loop - current_sg_window + 1 :

i_loop + 1].values

if len(price_segment) < current_sg_window or len(price_segment) <=

sg_polyorder :

df.loc[idx_today, filtered_price_sg_col] =

df.loc[df.index[i_loop-1], filtered_price_sg_col]

continue

try:

smoothed_segment = savgol_filter(price_segment,

window_length=current_sg_window, polyorder=sg_polyorder)

df.loc[idx_today, filtered_price_sg_col] = smoothed_segment[-1]

# Get the last point of the smoothed segment

except ValueError:

df.loc[idx_today, filtered_price_sg_col] =

df.loc[df.index[i_loop-1], filtered_price_sg_col]

df[filtered_price_sg_col].fillna(method='ffill', inplace=True);

df[filtered_price_sg_col].fillna(method='bfill', inplace=True)

Average True Range (ATR - atr_col_name_sl ): Used for the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); df['L-PC_sl'] = (df['Low'] -

df['Close'].shift(1)).abs()

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()

def run_adaptive_sg_filter_backtest(

ticker="BTC-USD",

start_date_str="2024-01-01",

end_date_str="2024-12-31",

vol_window=20,

vol_percentile_window=100,

sg_polyorder=2, # Must be less than sg_min_window



The if __name__ == '__main__':  block provides an example of how to call this function
with specific parameter values.

2.5. Data Handling

2.6. Trading Logic (within run_adaptive_sg_filter_backtest )

The strategy iterates daily. Signals are derived from the previous day's close versus the
previous day's SG filtered price. Trades are executed at the current day's Open .

2.6.1. Signal Generation Conditions

A target position ( target_pos ) is determined by comparing prev_close  to
prev_filtered_price :

2.6.2. Entry Conditions

If target_pos  indicates a new trade or a flip from an existing position, the trade is entered
at today_open . Commission is applied to the entry price.

sg_min_window=5, # Must be odd and > sg_polyorder

sg_max_window=51, # Must be odd and > sg_polyorder

atr_window_sl=14,

atr_multiplier_sl=2.0,

commission_bps_per_side=1.0,

plot_results=True,

verbose=True

):

# ... (parameter validation for sg_min_window, sg_max_window, sg_polyorder)

...

Data Download: Daily OHLCV data is fetched via yfinance . Standard droplevel  and
column selection logic is applied.

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (error handling, droplevel, column selection) ...

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short



2.6.3. Exit Conditions

Primarily through an ATR Trailing Stop-Loss. Positions also close if an opposite signal
generates a flip.

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net for the closing part of

the flip, including commission) ...

current_pos = target_pos; current_entry_gross = today_open # Set

new position and gross entry price

cost_entry = current_entry_gross * comm_rate_per_side #

Calculate entry commission

if current_pos == 1: # Entering New Long

effective_entry_costed = current_entry_gross + cost_entry

pnl_entry_leg_day = (today_close / effective_entry_costed) -

1 if effective_entry_costed !=0 else 0

# ... (set init_ts and current_ts) ...

elif current_pos == -1: # Entering New Short

effective_entry_costed = current_entry_gross - cost_entry

pnl_entry_leg_day = -((today_close / effective_entry_costed)

- 1) if effective_entry_costed !=0 else 0

# ... (set init_ts and current_ts) ...

ATR Trailing Stop-Loss Check (highest priority):

# (At the start of the daily loop logic for an active position)

if current_pos != 0 and pd.notna(current_ts) and

pd.notna(current_entry_gross):

exit_price_sl_gross = 0; stopped_out = False

if current_pos == 1 and today_low <= current_ts:

exit_price_sl_gross = min(today_open, current_ts); stopped_out =

True

elif current_pos == -1 and today_high >= current_ts:

exit_price_sl_gross = max(today_open, current_ts); stopped_out =

True

if stopped_out:

cost_exit = exit_price_sl_gross * comm_rate_per_side

if current_pos == 1: pnl_for_day = ((exit_price_sl_gross -

cost_exit) / current_entry_gross) - 1

else: pnl_for_day = -(((exit_price_sl_gross + cost_exit) /

current_entry_gross) - 1)

current_pos = 0; action_this_bar = True # Flag that a stop

occurred



2.6.4. Position Sizing, P&L, and Commission Calculation

2.7. Performance Evaluation

The script calculates and stores several performance metrics in a dictionary.

Trailing Stop Adjustment (if holding and not stopped): Updated daily.

# (If holding and not stopped or flipped)

elif current_pos != 0: # Holding

if current_pos == 1:

# ... (pnl_for_day calculation for holding) ...

current_ts = max(current_ts, today_close - atr_multiplier_sl *

today_atr_sl)

else: # current_pos == -1

# ... (pnl_for_day calculation for holding) ...

current_ts = min(current_ts, today_close + atr_multiplier_sl *

today_atr_sl)

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions ( comm_rate_per_side ): Calculated as commission_bps_per_side /
10000.0 .

For entries: cost_entry = current_entry_gross * comm_rate_per_side .
effective_entry_costed  is current_entry_gross + cost_entry  (long) or
current_entry_gross - cost_entry  (short).
For stop-loss exits: cost_exit = exit_price_sl_gross * comm_rate_per_side .
P&L is based on (exit_price_sl_gross - cost_exit)  or (exit_price_sl_gross
+ cost_exit) .
For flip exits: Similar logic applied to the exit leg at today_open .

P&L Calculation ( Strategy_Daily_Return ): Daily P&L considers gross prices and then
adjusts for commissions for entries/exits. For holding days, it's based on today_close /
prev_close .

Max Drawdown: A helper function calculate_max_drawdown  is defined and used.

def calculate_max_drawdown(returns_series):

# ... (implementation as provided in the script) ...

return max_drawdown_val if pd.notna(max_drawdown_val) else 0.0

Metrics Calculation ( _calc_and_store_metrics  local function):
This function computes Cumulative Return, Annualized Return, Annualized Volatility,
Sharpe Ratio, and Max Drawdown.
python # (Inside run_adaptive_sg_filter_backtest, after backtest loop) def

_calc_and_store_metrics(returns, name, tdpy, results_dict_ref): # ... (Check



2.8. Plotting Results

If plot_results  is true, six separate plots are generated:

2.9. Unique Features & Notes

for sufficient data) ... avg_r,std_r=returns.mean(),returns.std();

ann_r,ann_v=avg_r*tdpy,std_r*np.sqrt(tdpy); sharpe=ann_r/ann_v if ann_v >

1e-7 else np.nan; cum_r=(1+returns).prod();

mdd=calculate_max_drawdown(returns) # Using the external helper

results_dict_ref[name] = { 'Cumulative Return':cum_r, 'Annualized

Return':ann_r, 'Annualized Volatility':ann_v, 'Sharpe Ratio':sharpe, 'Max

Drawdown':mdd } if verbose: print(f"\n--- {name} ---\nCum Ret: {cum_r:.2f}x

| ...") # Called for strategy and benchmark

_calc_and_store_metrics(strat_returns, strategy_lbl, TRADING_DAYS_PER_YEAR,

metrics_results) _calc_and_store_metrics(bh_returns, f"{ticker} Buy & Hold",

TRADING_DAYS_PER_YEAR, metrics_results)

The script returns a dictionary metrics_results .

1. Price & Adaptive Savitzky-Golay Filter: Shows Close price, the
filtered_price_sg_col , and active Trailing Stops.

2. Historical Volatility & Rolling Percentile: Displays raw volatility and its rolling
percentile on a twin axis.

3. Adaptive Savitzky-Golay Window Length: Plots the adaptive_sg_window_col
(number of bars).

4. Strategy Position: Step plot of Long (1), Short (-1), or Flat (0) positions.
5. ATR for Stop Loss: Shows the atr_col_name_sl .
6. Cumulative Performance (Log Scale): Compares strategy returns to Buy & Hold.

# --- Plotting ---

if plot_results and not df_analysis.empty and len(df_analysis) > 5:

# fig, axs = plt.subplots(6, 1, ...)

# axs[0]: Price & Adaptive SG Filter

# axs[1]: Historical Volatility & Rolling Percentile

# axs[2]: Adaptive SG Window Length

# axs[3]: Strategy Position

# axs[4]: ATR for Stop Loss

# axs[5]: Cumulative Performance

# ... (detailed plotting calls for each) ...

plt.show()

Adaptive Savitzky-Golay Filter: The key feature is the use of an SG filter whose
window length adapts to market volatility (percentile rank). This differs from the previous
strategy which adapted EMA period based on ADX.



3. Dynamic Wavelet-Filter Hybrid Strategy
3.1. Overview and Objective

Overview:
This strategy utilizes the Discrete Wavelet Transform (DWT) to decompose the price series
into different frequency components within a rolling window. It then reconstructs a filtered
price signal by selectively using and modifying these components. Specifically, it aims to
keep the lower-frequency approximation, adjust mid-frequency detail coefficients based on a
volatility-derived gain, and discard the highest-frequency details.

Objective:
The objective is to create an adaptive filter that responds to changing market volatility by
dynamically adjusting the influence of mid-band wavelet coefficients.

3.2. Key Concepts: Discrete Wavelet Transform (DWT) &
Coefficient Weighting

Volatility-Based Window Sizing: Calm markets (low vol percentile) use a shorter SG
window, aiming for more responsiveness. Choppy markets (high vol percentile) use a
longer SG window for increased smoothing.
Iterative Filtering: The SG filter is applied iteratively because the window length can
change daily.
Scipy Dependency: Relies on scipy.signal.savgol_filter .
Commission Modeling: Explicitly includes and applies commissions per side.
Parameter Constraints: sg_polyorder  must be less than sg_min_window , and
window lengths must be odd. The adjust_window  function helps manage these
constraints.
Daily Timeframe: Operates on daily data.

When recent volatility is high, the "gain" applied to these mid-band coefficients is
increased, potentially making the filter more sensitive to these components.
When recent volatility is low, the gain is decreased.
Trading signals are then generated based on crossovers of the closing price with this
dynamically filtered price series. An ATR-based trailing stop-loss is used for risk
management.

Discrete Wavelet Transform (DWT): The DWT decomposes a signal (here, a window of
closing prices) into hierarchal sets of coefficients:

Approximation Coefficients (cA): Represent the low-frequency, trend-like part of
the signal at the chosen decomposition level.



3.3. Key Indicators and Components

Detail Coefficients (cD): Represent the higher-frequency parts. For a multi-level
decomposition (e.g., level N ), you get cD_N, cD_N-1, ..., cD_1 , where cD1  are
the highest frequency details.

Coefficient Weighting: This strategy modifies the wavelet coefficients before
reconstruction. It specifically targets the "mid-band" detail coefficients (interpreted as
cD2  in a 2-level decomposition context as suggested by the script's problem description,
though parameter dwt_level  is 3 in the provided code which would cause an error with
the current coefficient unpacking cA2, cD2, cD1 = coeffs ). The cD2  coefficients are
scaled by a volatility_gain_col . The highest frequency details ( cD1 ) are zeroed out,
and the approximation ( cA2 ) is preserved. The filtered signal is then reconstructed using
these modified coefficients.

Note on dwt_level : The script has a parameter dwt_level = 3  but the
coefficient unpacking cA2, cD2, cD1 = coeffs  and subsequent modification
coeffs_modified = [cA2, cD2_adjusted, cD1_zeroed]  are structured for a 2-
level decomposition. For these lines to execute correctly, dwt_level  should be set
to 2. The manual will proceed assuming the logic intended for a 2-level effective
processing based on the code's structure for coefficient manipulation.

Historical Volatility ( volatility_col ): Rolling standard deviation of daily returns.

df[daily_return_col] = df['Close'].pct_change()

df[volatility_col] =

df[daily_return_col].rolling(window=vol_window_for_gain).std()

Normalized Volatility ( normalized_vol_col ): Volatility normalized to a 0-1 range over
vol_norm_window_for_gain .

rolling_min_vol =

df[volatility_col].rolling(window=vol_norm_window_for_gain).min()

rolling_max_vol =

df[volatility_col].rolling(window=vol_norm_window_for_gain).max()

range_vol = rolling_max_vol - rolling_min_vol

df[normalized_vol_col] = ((df[volatility_col] - rolling_min_vol) /

range_vol.replace(0, np.nan)).fillna(0.5).clip(0,1)

Volatility-Based Gain ( volatility_gain_col ): Interpolated between gain_min  and
gain_max  based on the previous day's normalized volatility. This gain is applied to the
cD2  wavelet coefficients.

df[volatility_gain_col] = gain_min + df[normalized_vol_col].shift(1) *

(gain_max - gain_min)



df[volatility_gain_col].fillna((gain_min + gain_max) / 2, inplace=True)

Adaptive Wavelet Filtered Price ( filtered_price_wavelet_col ): Calculated
iteratively by applying DWT to a rolling window of closing prices, modifying coefficients,
and then performing an inverse DWT.

# (Inside the iterative loop for i_loop)

current_price_window = df['Close'].iloc[i_loop - dwt_processing_window +

1 : i_loop + 1].values

# ... (window length check) ...

current_gain = df.loc[idx_today, volatility_gain_col]

# ... (gain NaN check) ...

try:

# Assuming dwt_level allows unpacking into cA2, cD2, cD1 (i.e.,

dwt_level=2)

coeffs = pywt.wavedec(current_price_window, wavelet_type,

level=dwt_level) # dwt_level parameter

cA2, cD2, cD1 = coeffs # This unpacking implies level=2 processing

cD2_adjusted = cD2 * current_gain

cD1_zeroed = np.zeros_like(cD1)

coeffs_modified = [cA2, cD2_adjusted, cD1_zeroed] # Structure for

level 2 reconstruction

filtered_segment = pywt.waverec(coeffs_modified, wavelet_type)

# Use the last point of the reconstructed segment

df.loc[idx_today, filtered_price_wavelet_col] =

filtered_segment[len(current_price_window)-1]

except ValueError as e: # Handle errors from DWT/IDWT

df.loc[idx_today, filtered_price_wavelet_col] =

df.loc[df.index[i_loop-1], filtered_price_wavelet_col] if i_loop > 0

else np.nan

df[filtered_price_wavelet_col].fillna(method='ffill', inplace=True)

df[filtered_price_wavelet_col].fillna(method='bfill', inplace=True)

Average True Range (ATR - atr_col_name_sl ): For the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); #...

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()



3.4. Script Parameters

Key parameters defined at the script's start:

3.5. Data Handling

3.6. Trading Logic (within the main backtesting loop)
The strategy iterates daily. Signals are based on the previous day's close vs. filtered price;
trades execute at the current day's Open . The backtest loop structure and P&L calculations
are similar to previous adaptive filter examples. Note: comm_rate_per_side  is hardcoded to
0.0  in this script's loop, meaning no commissions are applied in this specific
implementation, though the P&L logic can accommodate it.

3.6.1. Signal Generation Conditions

# --- Parameters ---

ticker = "BTC-USD"

start_date = "2024-01-01" # Example of a shorter period

end_date = "2024-12-31"

# Wavelet Parameters

wavelet_type = 'db4'

dwt_level = 3 # DWT decomposition level (Note: code structure for

coeff modification implies level 2 processing)

dwt_processing_window = 90 # Rolling window for DWT

# Volatility-Based Gain Parameters

vol_window_for_gain = 30

vol_norm_window_for_gain = 90

gain_min = 0.5 # Min gain for cD2 (low vol)

gain_max = 1.5 # Max gain for cD2 (high vol)

# ATR Trailing Stop Parameters

atr_window_sl = 14

atr_multiplier_sl = 1.0

TRADING_DAYS_PER_YEAR = 252 # Adjusted for crypto if detected

Data Download: Standard daily OHLCV data download using yfinance .

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date, end=end_date,

auto_adjust=False, progress=False)

# ... (droplevel and column selection) ...



A target position ( target_pos ) is determined by comparing prev_close  to
prev_filtered_price  (the wavelet-filtered price):

3.6.2. Entry Conditions

If target_pos  suggests a new trade or a flip, entry occurs at today_open .

3.6.3. Exit Conditions

Primarily managed by an ATR Trailing Stop-Loss. Positions also close upon an opposing
signal (flip).

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net for the closing part of

the flip) ...

current_pos = target_pos; current_entry_gross = today_open

if current_pos == 1: # Entering New Long

pnl_entry_leg_day = ((today_close / current_entry_gross) -

1) - comm_rate_per_side # comm_rate_per_side is 0

# ... (set init_ts and current_ts) ...

elif current_pos == -1: # Entering New Short

pnl_entry_leg_day = (-((today_close / current_entry_gross) -

1)) - comm_rate_per_side # comm_rate_per_side is 0

# ... (set init_ts and current_ts) ...

ATR Trailing Stop-Loss Check:

# (At the start of the daily loop logic for an active position)

if current_pos != 0 and pd.notna(current_ts) and

pd.notna(current_entry_gross):

# ... (stop-loss hit logic as in previous scripts) ...

if stopped_out:

# ... (P&L calculation for stop-loss, including

comm_rate_per_side which is 0) ...

current_pos = 0; action_this_bar = True

Trailing Stop Adjustment: Updated daily if holding.



3.6.4. Position Sizing, P&L, and Commission Calculation

3.7. Performance Evaluation
Standard performance metrics are calculated from daily strategy returns.

3.8. Plotting Results

Six plots are generated for visualization:

# (If holding and not stopped or flipped)

elif current_pos != 0:

# ... (stop adjustment logic as in previous scripts) ...

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions: comm_rate_per_side  is initialized to 0.0  within the backtest loop of this
specific script. While the P&L logic includes subtraction of comm_rate_per_side , it
effectively means no commissions are applied in this version unless that variable is
changed.
P&L Calculation ( Strategy_Daily_Return ): Daily P&L based on stop-outs, flips, new
entries, or holding.

Max Drawdown: The calculate_max_drawdown  helper function is available.
Metrics Calculation ( _calc_and_store_metrics  local function): Similar to previous
scripts, computes and prints/stores Cumulative Return, Annualized Return, etc.

# (After backtest loop)

def _calc_and_store_metrics(returns, name, tdpy, results_dict_ref):

# ... (implementation as in previous script) ...

strategy_lbl = f"DynWaveletFilter (W:{wavelet_type},Lvl:

{dwt_level},ProcW:{dwt_processing_window},Gain:[{gain_min}-

{gain_max}],SL:{atr_multiplier_sl}x{atr_window_sl})"

_calc_and_store_metrics(strat_returns, strategy_lbl,

TRADING_DAYS_PER_YEAR, metrics_results)

# ... (benchmark metrics) ...

1. Price & Adaptive Wavelet Filter: Close price, the filtered_price_wavelet_col , and
Trailing Stops.

2. Historical Volatility & Normalized Volatility: Raw volatility and its 0-1 normalized
version.

3. Volatility-Based Gain for cD2: The volatility_gain_col  applied to mid-band
coefficients.

4. Strategy Position: Long/Short/Flat positions.



3.9. Unique Features & Notes

4. FRAMA (Fractal Adaptive Moving Average)
Crossover Strategy
4.1. Overview and Objective

5. ATR for Stop Loss.
6. Cumulative Performance (Log Scale): Strategy vs. Buy & Hold.

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 5:

fig, axs = plt.subplots(6, 1, figsize=(15, 28), sharex=True)

# axs[0]: Price & Adaptive Wavelet Filter

# axs[1]: Historical Volatility & Normalized Volatility

# axs[2]: Volatility-Based Gain

# axs[3]: Strategy Position

# axs[4]: ATR for Stop Loss

# axs[5]: Cumulative Performance

# ... (detailed plotting calls) ...

plt.show()

Dynamic Wavelet Filtering: The core is the DWT applied to rolling windows, with
dynamic adjustment of mid-band detail coefficient weights based on overall market
volatility.
Volatility-Sensitive Gain: Higher recent volatility leads to a higher gain applied to
selected wavelet coefficients, potentially making the filter more responsive or
emphasizing certain frequency components during such times.
Complexity: Involves advanced signal processing (DWT) and iterative calculation of the
filtered price.
PyWavelets  Dependency: Requires the PyWavelets  library.
Coefficient Selection & dwt_level : The script's logic for modifying coefficients ( cA2,
cD2, cD1 = coeffs ) is specific to a 2-level DWT. If dwt_level  parameter is set to a
value other than 2 (e.g., the default 3 in parameters), the coefficient unpacking will cause
an error. For the current code to work as intended with the specified coefficient
manipulation, dwt_level  should be 2.
Iterative Application: The wavelet filtering is applied to a moving window of data, and
the filtered price is extracted point-by-point.
Commissions: While the P&L structure supports commissions, they are effectively set
to zero in this script's backtesting loop by comm_rate_per_side = 0.0 .



Overview:
This strategy implements a Fractal Adaptive Moving Average (FRAMA) concept by
dynamically selecting an Exponential Moving Average (EMA) based on the prevailing market
regime, as estimated by the Hurst exponent. The Hurst exponent helps to classify the
market as trending, mean-reverting, or in a more random state. Based on this classification,
the strategy switches between short, medium, or long period EMAs to act as its adaptive
filter.

Objective:
The primary goal is to trade crossovers of the closing price with this Hurst-adapted EMA
(termed FRAMA_H ).

4.2. Key Concepts: Hurst Exponent & FRAMA

4.3. Key Indicators and Components

In trending markets (high Hurst exponent), a faster EMA is used to quickly capture
trend continuations.
In mean-reverting markets (low Hurst exponent), a slower EMA is used, potentially
aiming to filter noise and capture reversions, though the crossover logic remains
directional.
In intermediate (random/undetermined) markets, a medium-period EMA is used.
An ATR-based trailing stop-loss is employed for risk management.

Hurst Exponent (H): A measure used to classify time series.
H > 0.5: Indicates a persistent or trending series (positive autocorrelation). The
strategy uses H > h_trending_threshold  (e.g., 0.6) for this regime.
H < 0.5: Indicates an anti-persistent or mean-reverting series (negative
autocorrelation). The strategy uses H < h_reverting_threshold  (e.g., 0.4) for this
regime.
H = 0.5: Suggests a random walk (no correlation).
The Hurst exponent is calculated on a rolling window of log-returns using the
hurst  library.

FRAMA (Fractal Adaptive Moving Average - FRAMA_H ): In this context, FRAMA is not
a specific complex formula but rather a conceptual approach where the active EMA (from
a set of predefined EMAs) is selected based on the calculated Hurst exponent regime.

Hurst Exponent ( hurst_col ): Calculated on rolling windows of log-returns.

# Compute Hurst on log-returns

def get_hurst(series):

"""

series: 1D array of log-returns, length >=100

returns: H

"""



if len(series) < 100 or np.std(series) == 0:

return np.nan

H, c, data = compute_Hc(series, kind='change', simplified=True)

return H

log_rets = np.log(df['Close']).diff().dropna()

df.loc[log_rets.index, hurst_col] = (

log_rets

.rolling(window=hurst_lookback_window)

.apply(get_hurst, raw=False)

)

df[hurst_col].fillna(method='ffill', inplace=True)

df[hurst_col].fillna(0.5, inplace=True) # Default to neutral if still

NaN

Exponential Moving Averages (EMAs): Three EMAs with different periods are
calculated.

df[ema_short_col] = df['Close'].ewm(span=ema_short_window,

adjust=False).mean()

df[ema_medium_col] = df['Close'].ewm(span=ema_medium_window,

adjust=False).mean()

df[ema_long_col] = df['Close'].ewm(span=ema_long_window,

adjust=False).mean()

FRAMA_H ( frama_h_col ): The adaptively selected EMA based on the previous day's
Hurst exponent ( h_shift ).

h_shift = df[hurst_col].shift(1) # Use lagged Hurst to avoid lookahead

df[frama_h_col] = np.select(

[h_shift > h_trending_threshold, # Condition for trending

h_shift < h_reverting_threshold], # Condition for mean-reverting

[df[ema_short_col], df[ema_long_col]], # Choices for these

conditions

default=df[ema_medium_col] # Default choice

)

Average True Range (ATR - atr_col_name_sl ): For the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']

df['H-PC_sl'] = (df['High'] - df['Close'].shift(1)).abs()

df['L-PC_sl'] = (df['Low'] - df['Close'].shift(1)).abs()

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1)

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()



4.4. Script Parameters

Configurable parameters defined at the script's start:

4.5. Data Handling

4.6. Trading Logic (within the main backtesting loop)
The strategy iterates daily. Signals derive from the previous day's close versus the previous
day's FRAMA_H . Trades execute at the current day's Open .

4.6.1. Signal Generation Conditions

A trading signal ( signal ) is generated based on the crossover:

# --- Parameters ---

ticker = "BTC-USD"

start_date = "2021-01-01"

end_date = "2024-12-31"

# Hurst Exponent Parameters

hurst_lookback_window = 128 # Must be >=100 for compute_Hc

h_trending_threshold = 0.6

h_reverting_threshold = 0.4

ema_short_window = 7

ema_medium_window = 30

ema_long_window = 90

# ATR Trailing Stop Parameters

atr_window_sl = 14

atr_multiplier_sl = 1.0

TRADING_DAYS_PER_YEAR = 365 # Adjusted for crypto

Data Download: Standard daily OHLCV data download using yfinance .

# --- 1. Download Data ---

df_raw = yf.download(

[ticker], start=start_date, end=end_date,

auto_adjust=False, progress=False

)

# ... (droplevel and column selection logic) ...



4.6.2. Entry Conditions

If flat ( pos==0 ) and a non-zero signal  is generated, a position is entered at today 's Open
price ( o ).

4.6.3. Exit Conditions

Primarily via an ATR Trailing Stop-Loss. Positions are implicitly exited if an opposing signal
leads to a flip (though this script enters only when flat).

# (Inside backtest loop, if pos==0, i.e., currently flat)

signal = 1 if pc > ph else (-1 if pc < ph else 0)

# pc = prev_close, ph = prev_frama_h_col

# (Inside backtest loop, if pos==0 and signal!=0)

if signal != 0:

pos = signal

ep = o # entry_price = today's Open

if pos == 1: # Long entry

pnl = (c / ep) - 1 # P&L for the entry day (Close / Open)

init_ts = ep - atr_multiplier_sl * pa # pa = prev_atr_sl

ts = max(init_ts, c - atr_multiplier_sl * ta) # ta =

today_atr_sl

else: # Short entry

pnl = -((c / ep) - 1)

init_ts = ep + atr_multiplier_sl * pa

ts = min(init_ts, c + atr_multiplier_sl * ta)

ATR Trailing Stop-Loss Check (highest priority):

# (At the start of the daily loop logic for an active position)

if pos == 1 and l <= ts: # l = today_low, ts = active_ts

exit_price = min(o, ts) # o = today_open

pnl = (exit_price / ep) - 1 # ep = entry_price

pos, ep, ts = 0, np.nan, np.nan # Go flat

elif pos == -1 and h >= ts: # h = today_high

exit_price = max(o, ts)

pnl = -((exit_price / ep) - 1)

pos, ep, ts = 0, np.nan, np.nan # Go flat

Trailing Stop Adjustment (if holding and not stopped):

# (If holding position, else block after stop check)

else: # Not stopped

if pos == 1: # Holding long

pnl = (c / pc) - 1 # c = today_close, pc = prev_close



4.6.4. Position Sizing & P&L Calculation

4.7. Performance Evaluation
A local metrics  function calculates and prints key performance statistics.

Metrics include Cumulative Return, Annualized Return, Annualized Volatility, and Sharpe
Ratio.

4.8. Plotting Results

The script generates five plots for visualization:

ts = max(ts, c - atr_multiplier_sl * ta) # ta = today_atr_sl

else: # Holding short

pnl = -((c / pc) - 1)

ts = min(ts, c + atr_multiplier_sl * ta)

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
P&L Calculation ( Strategy_Daily_Return ): Calculated daily ( pnl ).

On entry: P&L from today_open  to today_close .
If stopped out: P&L from entry price to stop-loss exit price.
If holding: P&L from prev_close  to today_close .

Commissions: This script's backtest loop does not explicitly deduct commissions in its
P&L calculations.

# --- 4. Performance ---

def metrics(returns, name):

r = returns.dropna()

μ, σ = r.mean(), r.std()

ann_r = μ * TRADING_DAYS_PER_YEAR

ann_v = σ * np.sqrt(TRADING_DAYS_PER_YEAR)

sr = ann_r / ann_v if ann_v > 1e-8 else np.nan

cum = (1 + r).prod()

print(f"\n--- {name} ---")

print(f"Cumulative: {cum:.2f}x  |  Ann. Ret: {ann_r:.2%}  |  Ann. Vol: 

{ann_v:.2%}  |  Sharpe: {sr:.2f}")

metrics(df_analysis['Strategy_Daily_Return'].iloc[1:], "FRAMA_H Strategy")

metrics(bh.iloc[1:], f"{ticker} Buy & Hold")

1. Price & FRAMA_H: Close price and the adaptively selected FRAMA_H  line.
2. Hurst Exponent: The calculated rolling Hurst exponent with a 0.5 reference line.
3. Position: Step plot showing Long/Short/Flat positions.
4. ATR SL: The value of the ATR used for stop-loss calculation.



4.9. Unique Features & Notes

5. Gopalakrishnan RAVI-Driven Adaptive EMA Filter
Strategy
5.1. Overview and Objective
Overview:
This strategy implements an adaptive Exponential Moving Average (EMA) where the
smoothing period is dynamically adjusted based on the Range Action Verification Index
(RAVI). The RAVI, developed by Tushar Chande, measures the percentage difference
between a short-term and a long-term moving average to identify whether the market is in a
trending or a ranging phase.

5. Cumulative Returns: Log-scaled comparison of strategy returns vs. Buy & Hold.

# --- 5. Plots (optional) ---

# Plot 1: Price & FRAMA_H

plt.figure(figsize=(10, 6)); # ... plotting code ...; plt.show()

# Plot 2: Hurst Exponent

plt.figure(figsize=(10, 6)); # ... plotting code ...; plt.show()

# Plot 3: Position

plt.figure(figsize=(10, 6)); # ... plotting code ...; plt.show()

# Plot 4: ATR SL

plt.figure(figsize=(10, 6)); # ... plotting code ...; plt.show()

# Plot 5: Cumulative Returns

plt.figure(figsize=(10, 6)); # ... plotting code ...; plt.show()

Hurst-Based Adaptation: The core innovation is adapting the EMA period based on the
Hurst exponent's indication of market regime (trending, mean-reverting, or random).
Regime-Specific EMA Choice: Uses a shorter EMA for trending markets, a longer EMA
for mean-reverting markets, and a medium EMA otherwise.
hurst  Library Dependency: This strategy requires the hurst  library ( pip install
hurst ).
Computational Cost of Hurst: Rolling Hurst exponent calculation can be
computationally intensive, especially over long datasets or with large windows.
Hurst Window Requirement: The compute_Hc  function typically requires a window of
at least 100 data points for reliable estimation. The script uses hurst_lookback_window
= 128 .
No Explicit Commissions in Loop: The P&L calculations in the provided backtest loop
do not factor in trading commissions.



Objective:
The primary objective is to adapt the responsiveness of the EMA filter to current market
conditions as indicated by RAVI:

5.2. Key Concepts: Range Action Verification Index (RAVI)
The Range Action Verification Index (RAVI) is calculated as the absolute percentage
difference between a short-term Simple Moving Average (SMA) and a long-term SMA of the
price.
RAV I = |SMAshort−SMAlong|

SMAlong
× 100

This strategy uses these RAVI values to adjust the EMA filter's smoothing.

5.3. Key Indicators and Components

When RAVI is low (suggesting a ranging or consolidating market), the strategy uses a
longer EMA period for more smoothing.
When RAVI is high (suggesting a trending market), the strategy uses a shorter EMA
period to make the filter more responsive.
Trading signals are generated based on crossovers of the closing price with this RAVI-
driven adaptive EMA. The strategy includes an ATR-based trailing stop-loss and
accounts for trading commissions.

Low RAVI values (typically below a certain threshold like 0.5% to 1%) suggest that the
market is in a trading range or consolidation phase, as the short-term and long-term
averages are close together.
High RAVI values (typically above a threshold like 3%) suggest that the market is
trending, as the short-term average is diverging significantly from the long-term average.

RAVI ( ravi_col_name ): Calculated using short and long SMAs of the 'Close' price.

# Calculate RAVI

sma_short = df['Close'].rolling(window=ravi_short_ma_period).mean()

sma_long = df['Close'].rolling(window=ravi_long_ma_period).mean()

df[ravi_col_name] = (np.abs(sma_short - sma_long) /

sma_long.replace(0,np.nan)) * 100

df[ravi_col_name].fillna(method='bfill', inplace=True)

Normalized RAVI ( normalized_ravi_col ): RAVI values are clipped within a defined
percentage range ( ravi_map_min_pct , ravi_map_max_pct ) and then normalized to a 0-
1 scale.

ravi_clipped = df[ravi_col_name].clip(ravi_map_min_pct,

ravi_map_max_pct)

df[normalized_ravi_col] = (ravi_clipped - ravi_map_min_pct) /



(ravi_map_max_pct - ravi_map_min_pct + 1e-9) # Add epsilon

df[normalized_ravi_col].fillna(0, inplace=True)

df[normalized_ravi_col] = np.clip(df[normalized_ravi_col], 0, 1)

Adaptive EMA Period ( adaptive_ema_period_col ): The period for the adaptive EMA,
interpolated between period_filter_min  (for high RAVI) and period_filter_max  (for
low RAVI) based on the previous day's normalized RAVI.

# High Normalized RAVI (strong trend) -> period_filter_min (faster EMA)

# Low Normalized RAVI (weak trend) -> period_filter_max (slower EMA)

df[adaptive_ema_period_col] = period_filter_max -

df[normalized_ravi_col].shift(1) * (period_filter_max -

period_filter_min)

df[adaptive_ema_period_col] =

np.round(df[adaptive_ema_period_col]).fillna( (period_filter_min +

period_filter_max) / 2 ).astype(int)

df[adaptive_ema_period_col] = np.clip(df[adaptive_ema_period_col],

period_filter_min, period_filter_max)

RAVI-Driven Adaptive EMA ( filtered_price_ravi_col ): This is the adaptive filter,
calculated iteratively. Its smoothing factor Alpha_Adaptive_RAVI  changes daily based
on adaptive_ema_period_col .

df['Alpha_Adaptive_RAVI'] = 2 / (df[adaptive_ema_period_col] + 1)

df[filtered_price_ravi_col] = np.nan

# ... (Seeding the first value) ...

first_valid_alpha_idx = df['Alpha_Adaptive_RAVI'].first_valid_index()

df.loc[first_valid_alpha_idx, filtered_price_ravi_col] =

df.loc[first_valid_alpha_idx, 'Close'] # Seed

for i_loop in range(start_loc_for_ema_loop + 1, len(df)):

# ... (EMA calculation as in prior adaptive EMA script, using

'Alpha_Adaptive_RAVI') ...

df.loc[idx_today, filtered_price_ravi_col] = alpha_val *

current_close_val + (1 - alpha_val) * prev_filtered_price_val

# ... (fillna logic for filtered_price_ravi_col) ...

Average True Range (ATR - atr_col_name_sl_val ): Used for the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); #...

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl_val] =

df['TR_sl'].rolling(window=atr_window_sl).mean()



5.4. Script Parameters (Function Arguments)

The strategy is encapsulated in run_ravi_adaptive_ema_backtest , which takes these main
arguments:

5.5. Data Handling

5.6. Trading Logic (within run_ravi_adaptive_ema_backtest )
Trades are based on the previous day's close versus the RAVI-adaptive EMA, executed at
the current day's Open .

5.6.1. Signal Generation Conditions

A target position ( target_pos ) is determined by comparing prev_close  to
prev_filtered_price  (the RAVI-driven EMA):

def run_ravi_adaptive_ema_backtest(

ticker="BTC-USD",

start_date_str="2023-01-01",

end_date_str="2025-12-31",

ravi_short_ma_period=7, # Short MA for RAVI

ravi_long_ma_period=65, # Long MA for RAVI

ravi_map_min_pct=0.5, # RAVI at or below this -> period_filter_max

ravi_map_max_pct=3.0, # RAVI at or above this -> period_filter_min

period_filter_min=10, # Faster EMA for high RAVI

period_filter_max=100, # Slower EMA for low RAVI

atr_window_sl=14,

atr_multiplier_sl=2.0,

commission_bps_per_side=1.0,

verbose=True

):

# ... (parameter validation) ...

Data Download: Daily OHLCV data is fetched via yfinance , with standard processing.

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (error handling, droplevel, column selection) ...

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short



5.6.2. Entry Conditions

If target_pos  implies a new trade or a flip, entry occurs at today_open . Commissions are
applied.

5.6.3. Exit Conditions

The main exit is via an ATR Trailing Stop-Loss. Positions also close if an opposite signal
causes a flip.

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net for the closing part of

the flip, including commission) ...

current_pos = target_pos; current_entry_gross = today_open

if current_pos == 1: # Entering New Long

pnl_entry_leg_day = ((today_close / current_entry_gross) -

1) - comm_rate_val

# ... (set init_ts and current_ts) ...

elif current_pos == -1: # Entering New Short

pnl_entry_leg_day = (-((today_close / current_entry_gross) -

1)) - comm_rate_val

# ... (set init_ts and current_ts) ...

ATR Trailing Stop-Loss Check:

# (At the start of the daily loop logic for an active position)

if current_pos != 0 and pd.notna(current_ts) and

pd.notna(current_entry_gross):

# ... (stop-loss hit logic as in prior adaptive EMA script) ...

if stopped_out:

if current_pos == 1: pnl_for_day = (exit_price_sl_gross /

current_entry_gross) - 1 - comm_rate_val

else: pnl_for_day = -((exit_price_sl_gross /

current_entry_gross) - 1) - comm_rate_val

current_pos = 0; action_this_bar = True

Trailing Stop Adjustment: Updated daily if holding.

# (If holding and not stopped or flipped)

elif current_pos != 0:

# ... (stop adjustment logic as in prior adaptive EMA script) ...



5.6.4. Position Sizing, P&L, and Commission Calculation

5.7. Performance Evaluation

The script calculates and stores metrics in a dictionary, and can print a summary.

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions ( comm_rate_val ): Calculated as commission_bps_per_side / 10000.0
and applied to entries and exits.

# Example commission on stop-loss exit:

# pnl_for_day = (exit_price_sl_gross / current_entry_gross) - 1 -

comm_rate_val

# Example commission on new entry P&L for the day:

# pnl_entry_leg_day = ((today_close / current_entry_gross) - 1) -

comm_rate_val

P&L Calculation ( Strategy_Daily_Return ): Daily P&L reflecting entries, exits, holds,
and commissions.

Max Drawdown: Uses the calculate_max_drawdown  helper.
Metrics Calculation ( _calc_metrics_for_ravi_ema ): Computes key metrics.

# (Inside run_ravi_adaptive_ema_backtest)

def _calc_metrics_for_ravi_ema(returns, name, tdpy, results_dict_ref):

# ... (calculates Cum Ret, Ann Ret, Ann Vol, Sharpe, Max Drawdown)

...

results_dict_ref[name] = { ... metrics ... }

strategy_lbl = f"RAVI-AdaptiveEMA(RAVIs:

{ravi_short_ma_period}/{ravi_long_ma_period},P:[{period_filter_min}-

{period_filter_max}],Comm:{commission_bps_per_side}bps)"

_calc_metrics_for_ravi_ema(strat_returns, strategy_lbl,

TRADING_DAYS_PER_YEAR, metrics_results)

# ... (benchmark metrics) ...

Metrics Summary Printing ( _print_metrics_summary ): Formats and prints the
calculated metrics.

# (After metrics calculation loop)

if verbose:

print("--- 4. Performance Metrics ---")

for strategy_name_key, metrics_val in metrics_results.items():

if strategy_name_key == 'num_trades' or strategy_name_key ==

'parameters': continue

_print_metrics_summary(metrics_val, strategy_name_key)



5.8. Plotting Results (via plot_ravi_adaptive_ema_results
function)
A separate function generates six plots:

5.9. Unique Features & Notes

6. Kalman-Noise-Adaptive Trend Filter Strategy
6.1. Overview and Objective

Overview:
This strategy employs a Kalman filter to estimate the underlying "true" price of an asset as
a latent state. The Kalman filter is a recursive algorithm that uses a series of measurements
observed over time (containing noise and other inaccuracies) and produces estimates of

1. Price & RAVI-Driven Adaptive EMA: With Trailing Stops.
2. Range Action Verification Index (RAVI) & Normalized Value: RAVI with its mapping

thresholds, and normalized RAVI on a twin axis.
3. Adaptive EMA Period: Shows the dynamically changing EMA period.
4. Strategy Position: Long/Short/Flat positions.
5. ATR for Stop Loss.
6. Cumulative Performance (Log Scale): Strategy vs. Buy & Hold.

def plot_ravi_adaptive_ema_results(df_analysis, strategy_params):

# ... (plotting logic for 6 distinct figures) ...

plt.show() # Called after each figure configuration in the script

RAVI-Driven Adaptation: Uses the Range Action Verification Index (RAVI) to gauge
market state (trending vs. ranging) and adapt the EMA filter's smoothing period
accordingly.
Opposite Adaptation to Volatility Percentile: Unlike the Savitzky-Golay example
where high vol percentile led to longer windows (more smoothing), here high RAVI
(trending) leads to shorter EMA periods (less smoothing, more responsiveness), and low
RAVI (ranging) leads to longer EMA periods.
Iterative EMA: The adaptive EMA is calculated iteratively due to the daily changes in its
period.
Commission Modeling: Explicitly includes commissions in P&L calculations.
Modular Structure: The main backtesting logic, parameter definitions, and plotting are
well-encapsulated in functions.
Daily Timeframe: Operates on daily data.



unknown variables that tend to be more precise than those based on a single measurement
alone. A key feature of this strategy is the adaptive tuning of the filter's process noise
covariance (Q) and measurement noise covariance (R) based on observed market volatility.

Objective:
The primary objective is to generate a smoothed, adaptive trend line (the Kalman filtered
price) and trade crossovers of the closing price with this filter.

6.2. Key Concepts: Kalman Filter
A Kalman filter is an optimal recursive data processing algorithm. It works in a two-step
process:

Key components in a simple (univariate price tracking) Kalman filter:

6.3. Key Indicators and Components

The process noise (Q) is adapted using rolling realized volatility, allowing the filter to
expect more state variance when volatility is high.
The measurement noise (R) can be adaptive (based on the variance of price around a
short EMA) or fixed, influencing how much the filter trusts the current observed price.
The strategy aims to capture trends by going long when the price crosses above the
Kalman filter and short when it crosses below, with positions managed by an ATR-based
trailing stop-loss and accounting for commissions.

1. Predict: The filter predicts the current state variables along with their uncertainties.
2. Update: The filter updates these predictions using a weighted average, with more weight

being given to estimates with higher certainty. The weights, known as the Kalman Gain,
are dynamically calculated at each step to minimize the estimated error covariance.

State (x̂): The estimated true price. Assumed to follow a random walk in this model (
xk = xk−1 + wk, where wk is process noise).
Error Covariance (P): A measure of the estimated accuracy of the state estimate.
Process Noise Covariance (Q): Represents the uncertainty or noise in the process
model itself (i.e., how much the true price can change from one step to the next,
independent of measurement). This strategy adapts Q.
Measurement (z): The observed price (e.g., closing price). Assumed to be zk = xk + vk,
where vk is measurement noise.
Measurement Noise Covariance (R): Represents the uncertainty or noise in the
measurement. This strategy can adapt R or use a fixed value.
Kalman Gain (K): Determines how much the prediction is corrected by the current
measurement.

Realized Volatility ( realized_vol_col ): Standard deviation of daily returns, used to
adapt Q.



df[daily_return_col] = df['Close'].pct_change()

df[realized_vol_col] =

df[daily_return_col].rolling(window=realized_vol_window_for_q).std()

Adaptive Process Noise Covariance (Q - q_adaptive_col ): Scaled by the square of
the previous day's realized volatility.

df[q_adaptive_col] = q_scale_factor * (df[realized_vol_col].shift(1) **

2)

df[q_adaptive_col].fillna(method='bfill', inplace=True)

df[q_adaptive_col].replace(0, 1e-9, inplace=True) # Ensure Q is not zero

df[q_adaptive_col].fillna(df[q_adaptive_col].mean() if not

df[q_adaptive_col].empty else 1e-7, inplace=True)

Adaptive Measurement Noise Covariance (R - r_adaptive_col ): Can be adaptive or
fixed. If adaptive, it's based on the rolling mean of squared differences between 'Close'
and a short EMA of 'Close', lagged.

if r_fixed_value_fallback is not None:

df[r_adaptive_col] = r_fixed_value_fallback

else:

short_ema_for_noise = df['Close'].ewm(span=r_ema_period_for_noise,

adjust=False).mean()

measurement_noise_raw_sq = (df['Close'] - short_ema_for_noise)**2

df[r_adaptive_col] =

measurement_noise_raw_sq.rolling(window=r_calc_window).mean().shift(1)

df[r_adaptive_col].fillna(method='bfill', inplace=True)

df[r_adaptive_col].replace(0, 1e-9, inplace=True)

df[r_adaptive_col].fillna(df[r_adaptive_col].mean() if not

df[r_adaptive_col].empty else 1e-5, inplace=True)

Kalman Filtered Price ( kalman_filter_col ): Calculated iteratively using the Kalman
filter equations.

# Kalman Filter Calculation Loop

df[kalman_filter_col] = np.nan

x_hat = df['Close'].iloc[0] if not df.empty else 0 # Initial state

estimate

P = df[daily_return_col].var() if not df[daily_return_col].empty and

pd.notna(df[daily_return_col].var()) else 1.0 # Initial error covariance

# ... (logic to find start_kalman_loop_idx and seed first Kalman value)

...

for i_kf in range(start_kalman_loop_idx, len(df)):

idx = df.index[i_kf]

Q_current = df.loc[idx, q_adaptive_col]



6.4. Script Parameters (Function Arguments)
The core logic is in run_kalman_adaptive_noise_backtest , accepting these parameters:

R_current = df.loc[idx, r_adaptive_col]

z_measured = df.loc[idx, 'Close']

# ... (NaN checks) ...

# Predict

x_hat_predict = x_hat  # State is random walk: x_t = x_{t-1} + w

P_predict = P + Q_current

# Update

innovation = z_measured - x_hat_predict

S = P_predict + R_current

if S < 1e-9 : K = 0.0 # Avoid division by zero

else: K = P_predict / S # Kalman Gain

x_hat = x_hat_predict + K * innovation

P = (1 - K) * P_predict

df.loc[idx, kalman_filter_col] = x_hat

df[kalman_filter_col].fillna(method='ffill', inplace=True)

Average True Range (ATR - atr_col_name_sl_val ): For the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); #...

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl_val] =

df['TR_sl'].rolling(window=atr_window_sl).mean()

def run_kalman_adaptive_noise_backtest(

ticker,

start_date_str,

end_date_str,

realized_vol_window_for_q, # Window for realized vol driving Q

q_scale_factor, # Factor to scale squared realized vol for Q

r_calc_window, # Window for rolling variance for R (if

adaptive)

r_ema_period_for_noise, # Short EMA period for measurement noise base

(if adaptive)

r_fixed_value_fallback, # Optional fixed R, if None R is adaptive

atr_window_sl,

atr_multiplier_sl,

commission_bps_per_side,

plot_results,



6.5. Data Handling

6.6. Trading Logic (within
run_kalman_adaptive_noise_backtest )

Trades are based on the previous day's close vs. the Kalman filtered price, executed at the
current day's Open .

6.6.1. Kalman Filter State Estimation

The Kalman filter iteratively estimates the price ( x_hat ) as shown in section 6.3.

6.6.2. Signal Generation Conditions

A target position ( target_pos ) is determined by comparing prev_close  to
prev_filtered_price  (the Kalman filtered price):

6.6.3. Entry Conditions

If target_pos  indicates a new trade or a flip, entry occurs at today_open . Commissions
are applied.

verbose

):

# ...

Data Download: Standard daily OHLCV data download.

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (error handling, droplevel, column selection) ...

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net for the closing part of

the flip, including commission) ...

current_pos = target_pos; current_entry_gross = today_open



6.6.4. Exit Conditions

Primarily via an ATR Trailing Stop-Loss. Positions also close if an opposite signal causes a
flip.

6.6.5. Position Sizing, P&L, and Commission Calculation

6.7. Performance Evaluation
Metrics are calculated and stored, with options for printing a summary.

if current_pos == 1: # Entering New Long

pnl_entry_leg_day = ((today_close / current_entry_gross) -

1) - comm_rate_val

# ... (set init_ts and current_ts) ...

elif current_pos == -1: # Entering New Short

pnl_entry_leg_day = (-((today_close / current_entry_gross) -

1)) - comm_rate_val

# ... (set init_ts and current_ts) ...

ATR Trailing Stop-Loss Check: (Logic identical to previous adaptive filter scripts)
Trailing Stop Adjustment: (Logic identical to previous adaptive filter scripts)

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions ( comm_rate_val ): Applied as commission_bps_per_side / 10000.0  to
entry and exit legs.
P&L Calculation ( Strategy_Daily_Return ): Daily P&L reflecting entries, exits, holds,
and commissions.

Max Drawdown: Uses the calculate_max_drawdown  helper.
Metrics Calculation ( _calc_metrics_for_kalman ): Computes key metrics.

# (Inside run_kalman_adaptive_noise_backtest)

def _calc_metrics_for_kalman(returns, name, tdpy, results_dict_ref): #

Unique name for this script's metrics calc

# ... (calculates Cum Ret, Ann Ret, Ann Vol, Sharpe, Max Drawdown)

...

results_dict_ref[name] = { ... metrics ... }

strategy_lbl = f"KalmanAdaptNoise(QvolW:{realized_vol_window_for_q},QSF:

{q_scale_factor},RnoiseW:{r_calc_window},Comm:

{commission_bps_per_side}bps)"

_calc_metrics_for_kalman(strat_returns, strategy_lbl,

TRADING_DAYS_PER_YEAR, metrics_results)

# ... (benchmark metrics) ...



6.8. Plotting Results (via
plot_kalman_adaptive_noise_results  function)

A separate function generates six plots:

6.9. Unique Features & Notes

7. Spectral-Slope Adaptive Filter Strategy
7.1. Overview and Objective
Overview:
This strategy employs spectral analysis to adapt the smoothing period of an Exponential

Metrics Summary Printing ( _print_metrics_summary ): Formats and prints.

1. Price & Kalman Adaptive Noise Filter: With Trailing Stops.
2. Adaptive Process Noise (Q) & Realized Volatility: Shows Q and the realized volatility

that drives its adaptation.
3. Adaptive Measurement Noise (R): If R is adaptive.
4. Strategy Position.
5. ATR for Stop Loss.
6. Cumulative Performance (Log Scale).

def plot_kalman_adaptive_noise_results(df_analysis, strategy_params):

# ... (plotting logic for 6 distinct figures) ...

plt.show() # Called after each figure configuration in the script

Kalman Filter Core: Uses a Kalman filter for price tracking, which is a sophisticated
method for signal extraction.
Adaptive Q and R: The process noise (Q) is adapted based on realized volatility, and
measurement noise (R) can also be adaptive or fixed. This allows the filter to adjust its
confidence in its own predictions versus new measurements based on market
conditions.
State Estimation Approach: Models price as a latent state to be estimated, differing
from direct smoothing of prices with traditional MAs or SG filters.
Iterative Calculation: The Kalman filter is inherently iterative.
Parameter Sensitivity: Kalman filter parameters, especially q_scale_factor  and how
R is determined, can be very sensitive and require careful tuning.
Commission Modeling: Explicitly included.
Daily Timeframe: Designed for daily data.



Moving Average (EMA). It calculates the slope of the log-log Power Spectral Density (PSD)
of the price series over a rolling window. This "spectral slope" provides an indication of the
underlying characteristics of the price movements (e.g., trending, noisy, or mean-reverting
behavior). The calculated slope is then used to dynamically adjust the EMA's period.

Objective:
The primary objective is to create an adaptive EMA filter that changes its responsiveness
based on the spectral characteristics of the price data:

7.2. Key Concepts: Price Spectrum & Spectral Slope

7.3. Key Indicators and Components

When the spectral slope indicates a stronger trend (typically a steeper negative slope),
a shorter EMA period is used to make the filter more reactive.
When the spectral slope suggests more noise or weaker trends (a flatter slope, closer
to zero), a longer EMA period is used for increased smoothing.
Trading signals are generated from crossovers of the closing price with this spectrally-
adapted EMA. The strategy includes an ATR-based trailing stop-loss and accounts for
commissions.

Price Spectrum (Power Spectral Density - PSD): The PSD of a time series describes
how the power (or variance) of the signal is distributed over different frequencies. This
strategy uses Welch's method ( scipy.signal.welch ) to estimate the PSD of a rolling
window of detrended price data.
Log-Log Spectral Slope: When the logarithm of the PSD is plotted against the
logarithm of frequency, the slope of this line can characterize the time series.
For example, a pure random walk (Brownian motion) often exhibits a spectral slope of
around -2 (PSD ∝ 1/f²).
Slopes steeper than -2 (e.g., -2.5, -3) can indicate more persistent, trending behavior
(power concentrated at lower frequencies).
* Slopes flatter than -2 (e.g., -1, -0.5) can indicate more anti-persistent or noisy behavior.
This strategy uses this calculated slope to adapt its filter.

Spectral Slope ( spectral_slope_col_name ): Calculated on rolling windows of closing
prices using the _calculate_spectral_slope  helper function. This function detrends
the price segment, applies Welch's method for PSD estimation, and then performs a
linear regression on the log-log PSD vs. frequency plot to find the slope.

def _calculate_spectral_slope(price_segment_values):

if len(price_segment_values) < spectrum_nperseg / 2 or

np.std(price_segment_values) < 1e-9 :

return np.nan

try:

segment_detrended = signal.detrend(price_segment_values)



if np.std(segment_detrended) < 1e-9: return np.nan

freqs, psd = signal.welch(segment_detrended, fs=1.0,

nperseg=min(len(segment_detrended), spectrum_nperseg),

scaling='density',nfft=max(spectrum_nperseg, len(segment_detrended)))

valid_indices = np.where((freqs > 1e-6) & (psd > 1e-9))[0]

if len(valid_indices) < 2: return np.nan

log_freqs, log_psd = np.log10(freqs[valid_indices]),

np.log10(psd[valid_indices])

if np.std(log_freqs) < 1e-6 or np.std(log_psd) < 1e-6: return

np.nan

slope, _, _, _, _ = stats.linregress(log_freqs, log_psd)

return slope

except (ValueError, FloatingPointError): return np.nan

df[spectral_slope_col_name] =

df['Close'].rolling(window=spectrum_window).apply(_calculate_spectral_sl

ope, raw=True)

df[spectral_slope_col_name].fillna(method='ffill', inplace=True)

df[spectral_slope_col_name].fillna(-2.0, inplace=True) # Fallback to

Brownian slope

Adaptive EMA Period ( adaptive_ema_period_col_name ): The EMA period is
interpolated between period_filter_min  and period_filter_max  based on the
previous day's normalized spectral slope. Steeper negative slopes (more trending) map
to period_filter_min , while flatter slopes (noisier) map to period_filter_max .

clipped_slope = df[spectral_slope_col_name].clip(slope_map_trend,

slope_map_noise) # slope_map_trend is more negative

norm_slope = (clipped_slope - slope_map_trend) / (slope_map_noise -

slope_map_trend + 1e-9)

df[adaptive_ema_period_col_name] = period_filter_min + norm_slope *

(period_filter_max - period_filter_min)

df[adaptive_ema_period_col_name] =

np.round(df[adaptive_ema_period_col_name].shift(1)).fillna((period_filte

r_min + period_filter_max) / 2).astype(int)

df[adaptive_ema_period_col_name] =

np.clip(df[adaptive_ema_period_col_name], period_filter_min,

period_filter_max)

Spectral-Slope Adaptive EMA ( filtered_price_spectral_col_name ): The EMA
calculated iteratively with its period (and thus alpha) changing daily based on
adaptive_ema_period_col_name .

df['Alpha_Adaptive_Spectral'] = 2 / (df[adaptive_ema_period_col_name] +

1)

df[filtered_price_spectral_col_name] = np.nan



7.4. Script Parameters (Function Arguments)
The core logic is within run_spectral_slope_adaptive_filter_backtest :

# ... (Seeding the first value) ...

first_valid_alpha_idx =

df['Alpha_Adaptive_Spectral'].first_valid_index()

df.loc[first_valid_alpha_idx, filtered_price_spectral_col_name] =

df.loc[first_valid_alpha_idx, 'Close']

for i_loop in range(start_loc_for_ema_loop + 1, len(df)):

# ... (EMA calculation using 'Alpha_Adaptive_Spectral', as in prior

adaptive EMA scripts) ...

df.loc[idx_today, filtered_price_spectral_col_name] = alpha_val 

* current_close_val + (1 - alpha_val) * prev_filtered_price_val

# ... (fillna logic for filtered_price_spectral_col_name) ...

Average True Range (ATR - atr_col_name_sl_val ): For the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); #...

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl_val] =

df['TR_sl'].rolling(window=atr_window_sl).mean()

def run_spectral_slope_adaptive_filter_backtest(

ticker="BTC-USD",

start_date_str="2020-01-01",

end_date_str="2024-12-31",

spectrum_window=128, # Rolling window for calculating price

spectrum

spectrum_nperseg=64, # Length of each segment for Welch's method

slope_map_trend = -2.5, # Slope indicating strongest trend (maps to

period_filter_min)

slope_map_noise = -1.0, # Slope indicating noisiest/weakest trend

(maps to period_filter_max)

period_filter_min = 10, # Shortest EMA period

period_filter_max = 100, # Longest EMA period

atr_window_sl=14,

atr_multiplier_sl=2.0,

commission_bps_per_side=1.0,

plot_results=True,

verbose=True

):

# ...



7.5. Data Handling

7.6. Trading Logic (within
run_spectral_slope_adaptive_filter_backtest )

Daily iteration. Signals from previous day's close vs. spectral-EMA; trades at current day's
Open .

7.6.1. Spectral Slope Calculation

Performed by the _calculate_spectral_slope  helper function within a rolling apply, as
shown in section 7.3.

7.6.2. Adaptive EMA Period Calculation

Based on mapping the lagged spectral slope to the defined period range, as shown in
section 7.3.

7.6.3. Iterative Adaptive EMA Calculation

Calculated daily using the adaptive period, as shown in section 7.3.

7.6.4. Signal Generation Conditions

Target position ( target_pos ) from prev_close  vs. prev_filtered_price  (the spectral-
EMA):

7.6.5. Entry Conditions

If target_pos  suggests a new trade or a flip, entry is at today_open . Commissions applied.

Data Download: Standard daily OHLCV data fetch using yfinance .

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (error handling, droplevel, column selection) ...

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a



7.6.6. Exit Conditions

Mainly via ATR Trailing Stop-Loss. Flips also cause exits.

7.6.7. Position Sizing, P&L, and Commission Calculation

7.7. Performance Evaluation
Metrics are calculated and can be printed, stored in metrics_results .

flip

# ... (calculate pnl_exit_leg_net with commission) ...

current_pos = target_pos; current_entry_gross = today_open

if current_pos == 1: # Entering New Long

pnl_entry_leg_day = ((today_close / current_entry_gross) -

1) - comm_rate_val

# ... (set init_ts and current_ts) ...

elif current_pos == -1: # Entering New Short

pnl_entry_leg_day = (-((today_close / current_entry_gross) -

1)) - comm_rate_val

# ... (set init_ts and current_ts) ...

ATR Trailing Stop-Loss Check: (Logic identical to previous adaptive filter scripts,
includes commission)
Trailing Stop Adjustment: (Logic identical to previous adaptive filter scripts)

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions ( comm_rate_val ): Applied as commission_bps_per_side / 10000.0  to
entries/exits.
P&L Calculation ( Strategy_Daily_Return ): Daily P&L reflecting trades and
commissions.

Max Drawdown: Uses the calculate_max_drawdown  helper.
Metrics Calculation ( _calc_metrics_for_spectral ): Computes key metrics.

# (Inside run_spectral_slope_adaptive_filter_backtest)

def _calc_metrics_for_spectral(returns, name, tdpy, results_dict_ref):

# ... (calculates Cum Ret, Ann Ret, Ann Vol, Sharpe, Max Drawdown)

...

results_dict_ref[name] = { ... metrics ... }

strategy_lbl = f"SpectralSlopeEMA(SpecW:{spectrum_window},P:

[{period_filter_min}-{period_filter_max}],Comm:

{commission_bps_per_side}bps)"

_calc_metrics_for_spectral(strat_returns, strategy_lbl,



7.8. Plotting Results (via
plot_spectral_slope_adaptive_filter_results  function)

A separate function generates six plots:

7.9. Unique Features & Notes

TRADING_DAYS_PER_YEAR, metrics_results)

# ... (benchmark metrics) ...

Metrics Summary Printing ( _print_metrics_summary ): Formats and prints.

1. Price & Spectral Adaptive EMA: With Trailing Stops.
2. Log-Log Spectral Slope (Rolling): With mapping thresholds and a -2.0 (Brownian)

reference.
3. Adaptive EMA Period: Shows the dynamically changing EMA period.
4. Strategy Position.
5. ATR for Stop Loss.
6. Cumulative Performance (Log Scale).

def plot_spectral_slope_adaptive_filter_results(df_analysis,

strategy_params):

# ... (plotting logic for 6 distinct figures) ...

plt.show() # Called after each figure configuration in the script

Spectral Analysis for Adaptation: Uses the slope of the price spectrum (a
sophisticated signal processing technique) to gauge market characteristics and adapt
filter bandwidth.
Adaptive EMA Period: The EMA period dynamically changes based on whether the
market appears more trending (steeper negative spectral slope) or noisy (flatter spectral
slope).
scipy.signal.welch  & scipy.stats.linregress  Dependency: Requires scipy  for
these calculations.
Computational Cost: Calculating spectral slope on a rolling basis can be
computationally intensive.
Parameter Sensitivity: Parameters related to spectrum calculation ( spectrum_window ,
spectrum_nperseg ) and slope mapping ( slope_map_trend , slope_map_noise ) are
critical and likely require careful tuning.
Iterative EMA: The adaptive EMA is calculated iteratively.
Commission Modeling: Explicitly handled.
Daily Timeframe.



8. Time-Decay Adaptive Exponential MA (TD-AEMA)
Strategy
8.1. Overview and Objective
Overview:
This strategy implements an adaptive Exponential Moving Average (EMA) where its
smoothing factor, traditionally denoted as alpha (α), is dynamically adjusted based on recent
market volatility. The adaptation mechanism uses an exponential decay function: alpha
decreases (leading to a slower EMA) as an Exponentially Weighted Moving Average
(EWMA) of historical volatility increases.

Objective:
The primary goal is to create an EMA filter that becomes more conservative (smoother,
longer effective period) during periods of higher volatility and more responsive (faster,
shorter effective period) during lower volatility. The strategy aims to:

8.2. Key Concepts: Time-Decay Alpha Adaptation

The core of this adaptive filter is the dynamic adjustment of the EMA's smoothing factor,
alpha (α). In a standard EMA, α = 2/(Period+ 1). Here, α is not fixed but varies with
volatility:

α(t) = α0 × exp(−λ ⋅ σt−1)

Where:

Effectively:

Adapt the filter's smoothing factor α(t) using the formula: α(t) = α0 × exp(−λ ⋅ σt−1),
where σt−1 is the lagged EWMA of historical volatility, α0 is a base (maximum) alpha, and
λ is a decay parameter.
Generate trading signals based on crossovers of the closing price with this Time-Decay
Adaptive EMA (TD-AEMA).
Manage risk using an ATR-based trailing stop-loss and account for trading commissions.

α(t): The adaptive alpha for the current day t .
α0: A base alpha, corresponding to the fastest EMA (shortest period,
period_ema_min_for_alpha0 ), which occurs when volatility (σ) is zero.
exp: The exponential function.
−λ: A negative decay parameter ( lambda_decay_param ). A larger positive λ means
alpha decays more rapidly as volatility increases.
σt−1: The EWMA of historical volatility, calculated up to the previous day
( ewma_vol_col.shift(1) ).



8.3. Key Indicators and Components

As σt−1 (EWMA volatility) increases, exp(−λ ⋅ σt−1) decreases, leading to a smaller
α(t). A smaller alpha means a longer effective EMA period (more smoothing).
As σt−1 decreases, exp(−λ ⋅ σt−1) increases (approaching 1), leading to a larger α(t)
(up to α0). A larger alpha means a shorter effective EMA period (less smoothing, faster
response).
The calculated alpha is also capped to correspond to a maximum effective period.

Historical Volatility ( hist_vol_col ): Rolling standard deviation of daily returns.

df[daily_return_col] = df['Close'].pct_change()

df[hist_vol_col] =

df[daily_return_col].rolling(window=vol_calc_window).std()

EWMA of Historical Volatility ( ewma_vol_col ): An exponentially weighted moving
average of hist_vol_col , representing σt.

df[ewma_vol_col] = df[hist_vol_col].ewm(span=vol_ema_period,

adjust=False).mean()

df[ewma_vol_col].fillna(method='bfill', inplace=True);

df[ewma_vol_col].fillna(0, inplace=True)

Adaptive Alpha ( adaptive_alpha_col ): Calculated daily using the time-decay formula
based on the previous day's ewma_vol_col .

alpha_0 = 2 / (period_ema_min_for_alpha0 + 1)

df[adaptive_alpha_col] = alpha_0 * np.exp(-lambda_decay_param *

df[ewma_vol_col].shift(1))

# Cap alpha

alpha_min_effective = 2 / (period_ema_max_cap + 1)

df[adaptive_alpha_col] =

df[adaptive_alpha_col].clip(lower=alpha_min_effective, upper=alpha_0)

df[adaptive_alpha_col].fillna(alpha_0, inplace=True)

Effective EMA Period ( effective_period_col ): The EMA period that the current
adaptive_alpha_col  corresponds to.

df[effective_period_col] = (2 / df[adaptive_alpha_col]) - 1

df[effective_period_col] =

np.round(df[effective_period_col]).astype(int)



8.4. Script Parameters (Function Arguments)
The strategy is contained within run_time_decay_adaptive_ema_backtest :

Time-Decay Adaptive EMA (TD-AEMA - td_aema_filter_col ): The filtered price
series calculated iteratively using the adaptive_alpha_col .

df[td_aema_filter_col] = np.nan

# ... (Seeding the first value) ...

first_valid_alpha_idx = df[adaptive_alpha_col].first_valid_index()

df.loc[first_valid_alpha_idx, td_aema_filter_col] =

df.loc[first_valid_alpha_idx, 'Close']

for i_loop in range(start_loc_for_ema_loop + 1, len(df)):

idx_today = df.index[i_loop]; idx_prev = df.index[i_loop-1]

alpha_val = df.loc[idx_today, adaptive_alpha_col] # Alpha for

today's EMA

current_close_val = df.loc[idx_today, 'Close']

prev_filtered_price_val = df.loc[idx_prev, td_aema_filter_col]

# ... (NaN checks) ...

df.loc[idx_today, td_aema_filter_col] = alpha_val *

current_close_val + (1 - alpha_val) * prev_filtered_price_val

# ... (fillna logic for td_aema_filter_col) ...

Average True Range (ATR - atr_col_name_sl_val ): For the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); #...

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl_val] =

df['TR_sl'].rolling(window=atr_window_sl).mean()

def run_time_decay_adaptive_ema_backtest(

ticker="SPY",

start_date_str="2010-01-01",

end_date_str="2024-12-31",

vol_calc_window=20, # Window for raw historical volatility

vol_ema_period=10, # Period for EWMA of historical volatility

period_ema_min_for_alpha0=10,# Corresponds to alpha_0 (fastest EMA)

lambda_decay_param=50.0, # Sensitivity of alpha decay to volatility

period_ema_max_cap=200, # Max effective period (min alpha)

atr_window_sl=14,

atr_multiplier_sl=2.0,

commission_bps_per_side=1.0,

verbose=True



8.5. Data Handling

8.6. Trading Logic (within
run_time_decay_adaptive_ema_backtest )

Daily iteration. Signals from previous day's close vs. TD-AEMA; trades at current day's
Open .

8.6.1. Adaptive Alpha Calculation

As detailed in section 8.3, adaptive_alpha_col  is calculated based on lagged EWMA of
volatility.

8.6.2. Iterative TD-AEMA Calculation

The td_aema_filter_col  is computed iteratively using the daily adaptive_alpha_col , as
shown in section 8.3.

8.6.3. Signal Generation Conditions

Target position ( target_pos ) from prev_close  vs. prev_filtered_price  (the TD-AEMA):

8.6.4. Entry Conditions

If target_pos  suggests a new trade or a flip, entry is at today_open . Commissions applied.

):

# ...

Data Download: Standard daily OHLCV data fetch.

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (error handling, droplevel, column selection) ...

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net with commission) ...



8.6.5. Exit Conditions

Mainly via ATR Trailing Stop-Loss. Flips also cause exits.

8.6.6. Position Sizing, P&L, and Commission Calculation

8.7. Performance Evaluation
Standard metrics are calculated.

current_pos = target_pos; current_entry_gross = today_open

if current_pos == 1: # Entering New Long

pnl_entry_leg_day = ((today_close / current_entry_gross) -

1) - comm_rate_val

# ... (set init_ts and current_ts) ...

elif current_pos == -1: # Entering New Short

pnl_entry_leg_day = (-((today_close / current_entry_gross) -

1)) - comm_rate_val

# ... (set init_ts and current_ts) ...

ATR Trailing Stop-Loss Check: (Identical logic to previous adaptive filter scripts,
includes commission)
Trailing Stop Adjustment: (Identical logic to previous adaptive filter scripts)

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions ( comm_rate_val ): Applied as commission_bps_per_side / 10000.0 .
P&L Calculation ( Strategy_Daily_Return ): Daily P&L reflecting trades and
commissions.

Max Drawdown: Uses calculate_max_drawdown  helper.
Metrics Calculation ( _calc_metrics_for_tdaema ): Computes key performance
indicators.

# (Inside run_time_decay_adaptive_ema_backtest)

def _calc_metrics_for_tdaema(returns, name, tdpy, results_dict_ref): #

Unique name

# ... (standard calculations as in previous scripts) ...

results_dict_ref[name] = { ... metrics ... }

strategy_lbl = f"TD-AEMA(V:{vol_calc_window},Ve:{vol_ema_period},P0:

{period_ema_min_for_alpha0},L:{lambda_decay_param},Pcap:

{period_ema_max_cap},Comm:{commission_bps_per_side}bps)"

_calc_metrics_for_tdaema(strat_returns, strategy_lbl,

TRADING_DAYS_PER_YEAR, metrics_results)

# ... (benchmark metrics) ...



8.8. Plotting Results (via
plot_time_decay_adaptive_ema_results  function)

A separate function generates six plots:

8.9. Unique Features & Notes

9. VIDYA (CMO-Adaptive EMA) Crossover Strategy
9.1. Overview and Objective

Overview:
VIDYA, or Variable Index Dynamic Average, is a type of adaptive moving average where the
smoothing factor is dynamically adjusted based on a measure of market momentum or
volatility. This specific implementation uses the Chande Momentum Oscillator (CMO) to

Metrics Summary Printing ( _print_metrics_summary ): Formats and prints results.

1. Price & Time-Decay Adaptive EMA: With Trailing Stops.
2. Historical Volatility and its EWMA (σt).
3. Adaptive Alpha & Resulting Effective EMA Period: Shows the dynamic alpha and its

corresponding EMA period.
4. Strategy Position.
5. ATR for Stop Loss.
6. Cumulative Performance (Log Scale).

def plot_time_decay_adaptive_ema_results(df_analysis, strategy_params):

# ... (plotting logic for 6 distinct figures) ...

plt.show() # Called after each figure configuration in the script

Exponential Decay Alpha: The EMA's smoothing factor α is directly modulated by an
exponential function of EWMA volatility. This provides a continuous adaptation
mechanism.
Volatility Sensitivity Control (λ): The lambda_decay_param  offers explicit control over
how sensitively the EMA's responsiveness changes with volatility.
Bounded Adaptation: The effective EMA period is implicitly bounded by
period_ema_min_for_alpha0  (when volatility approaches zero) and explicitly by
period_ema_max_cap  (via alpha clipping).
Iterative EMA: The TD-AEMA is calculated iteratively due to the daily changing alpha.
Commission Modeling: Explicitly included.
Daily Timeframe.



adapt the period of an Exponential Moving Average (EMA). The magnitude (absolute value)
of the CMO determines the EMA's responsiveness.

Objective:
The primary goal is to create an EMA filter that adapts its smoothing based on the strength
of price momentum:

9.2. Key Concepts: Chande Momentum Oscillator (CMO) &
VIDYA

9.3. Key Indicators and Components

When momentum is strong (high absolute CMO value), a shorter EMA period is used,
making the filter more sensitive and quicker to react to price changes.
When momentum is weak (low absolute CMO value), a longer EMA period is used,
resulting in a smoother filter that is less reactive to minor fluctuations.
Trading signals are generated from crossovers of the closing price with this CMO-
adapted EMA (VIDYA filter). The strategy includes an ATR-based trailing stop-loss and
accounts for commissions.

Chande Momentum Oscillator (CMO): Developed by Tushar Chande, the CMO
measures pure momentum. It is calculated as (Su − Sd)/(Su + Sd) × 100, where Su is the
sum of upward price movements over a period, and Sd is the sum of downward price
movements over the same period. CMO values range from -100 to +100. High absolute
values (e.g., > 50 or < -50) indicate strong momentum, while values near 0 suggest weak
momentum or a ranging market. This strategy uses the absolute value of CMO, scaled to
a 0-1 range, to drive the adaptation.
VIDYA (Variable Index Dynamic Average): In this implementation, VIDYA refers to an
EMA whose smoothing period (and thus its alpha) is dynamically adjusted based on the
normalized absolute CMO.

Chande Momentum Oscillator (CMO - cmo_col_name ): Calculated using
pandas_ta.momentum.cmo .

# Chande Momentum Oscillator (CMO)

df[cmo_col_name] = ta.momentum.cmo(df['Close'], length=cmo_period)

df[cmo_col_name].fillna(0, inplace=True) # Fill initial CMO NaNs with 0

Normalized Absolute CMO ( norm_abs_cmo_col ): The absolute value of CMO is taken
and normalized to a 0-1 range (where 1 represents maximum momentum strength,
typically |CMO|=100).



abs_cmo = df[cmo_col_name].abs()

df[norm_abs_cmo_col] = (abs_cmo / 100).clip(0, 1)

Adaptive VIDYA Period ( adaptive_vidya_period_col ): The EMA period is interpolated
between period_vidya_min  (for high normalized absolute CMO) and
period_vidya_max  (for low normalized absolute CMO), based on the previous day's
norm_abs_cmo_col .

# High NormAbsCMO (strong momentum) -> period_vidya_min (faster EMA)

# Low NormAbsCMO (weak momentum) -> period_vidya_max (slower EMA)

df[adaptive_vidya_period_col] = period_vidya_max -

df[norm_abs_cmo_col].shift(1) * (period_vidya_max - period_vidya_min)

df[adaptive_vidya_period_col] =

np.round(df[adaptive_vidya_period_col]).fillna( (period_vidya_min +

period_vidya_max) / 2 ).astype(int)

df[adaptive_vidya_period_col] = np.clip(df[adaptive_vidya_period_col],

period_vidya_min, period_vidya_max)

VIDYA Filter ( vidya_filter_col ): The CMO-adaptive EMA, calculated iteratively. Its
smoothing factor Alpha_Adaptive_VIDYA  changes daily.

df['Alpha_Adaptive_VIDYA'] = 2 / (df[adaptive_vidya_period_col] + 1)

df[vidya_filter_col] = np.nan

# ... (Seeding the first value) ...

first_valid_alpha_idx = df['Alpha_Adaptive_VIDYA'].first_valid_index()

df.loc[first_valid_alpha_idx, vidya_filter_col] =

df.loc[first_valid_alpha_idx, 'Close']

for i_loop in range(start_loc_for_ema_loop + 1, len(df)):

idx_today = df.index[i_loop]; idx_prev = df.index[i_loop-1]

alpha_val = df.loc[idx_today, 'Alpha_Adaptive_VIDYA']

current_close_val = df.loc[idx_today, 'Close']

prev_filtered_price_val = df.loc[idx_prev, vidya_filter_col]

# ... (NaN checks) ...

df.loc[idx_today, vidya_filter_col] = alpha_val * current_close_val 

+ (1 - alpha_val) * prev_filtered_price_val

# ... (fillna logic for vidya_filter_col) ...

Average True Range (ATR - atr_col_name_sl_val ): For the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); #...

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);



9.4. Script Parameters (Function Arguments)

The strategy is encapsulated in run_vidya_crossover_backtest :

9.5. Data Handling

9.6. Trading Logic (within run_vidya_crossover_backtest )
Daily iteration. Signals from previous day's close vs. VIDYA filter; trades at current day's
Open .

9.6.1. Adaptive EMA Period Calculation (VIDYA logic)

The adaptive_vidya_period_col  is determined based on the lagged normalized absolute
CMO, as detailed in section 9.3.

9.6.2. Iterative VIDYA Filter Calculation

The vidya_filter_col  is computed iteratively using the daily Alpha_Adaptive_VIDYA , as
shown in section 9.3.

df[atr_col_name_sl_val] =

df['TR_sl'].rolling(window=atr_window_sl).mean()

def run_vidya_crossover_backtest(

ticker="SPY",

start_date_str="2010-01-01",

end_date_str="2024-12-31",

cmo_period=14,

# Adaptive EMA period range driven by CMO magnitude

period_vidya_min=10, # Faster EMA for high abs(CMO)

period_vidya_max=60, # Slower EMA for low abs(CMO)

atr_window_sl=14,

atr_multiplier_sl=2.0,

commission_bps_per_side=1.0,

verbose=True

):

# ... (parameter validation) ...

Data Download: Standard daily OHLCV data fetch using yfinance .

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (error handling, droplevel, column selection) ...



9.6.3. Signal Generation Conditions

Target position ( target_pos ) from prev_close  vs. prev_filtered_price  (the VIDYA
filter):

9.6.4. Entry Conditions

If target_pos  suggests a new trade or a flip, entry is at today_open . Commissions applied.

9.6.5. Exit Conditions

Mainly via ATR Trailing Stop-Loss. Flips also cause exits.

9.6.6. Position Sizing, P&L, and Commission Calculation

9.7. Performance Evaluation

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net with commission) ...

current_pos = target_pos; current_entry_gross = today_open

if current_pos == 1: # Entering New Long

pnl_entry_leg_day = ((today_close / current_entry_gross) -

1) - comm_rate_val

# ... (set init_ts and current_ts) ...

elif current_pos == -1: # Entering New Short

pnl_entry_leg_day = (-((today_close / current_entry_gross) -

1)) - comm_rate_val

# ... (set init_ts and current_ts) ...

ATR Trailing Stop-Loss Check: (Identical logic to previous adaptive filter scripts,
includes commission)
Trailing Stop Adjustment: (Identical logic to previous adaptive filter scripts)

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions ( comm_rate_val ): Applied as commission_bps_per_side / 10000.0 .
P&L Calculation ( Strategy_Daily_Return ): Daily P&L reflecting trades and
commissions.



Standard metrics are calculated and can be printed.

9.8. Plotting Results (via
plot_vidya_results_separate_windows  function)

A separate function generates six plots:

9.9. Unique Features & Notes

Max Drawdown: Uses the calculate_max_drawdown  helper.
Metrics Calculation ( _calc_metrics_for_vidya ): Computes key performance
indicators.

# (Inside run_vidya_crossover_backtest)

def _calc_metrics_for_vidya(returns, name, tdpy, results_dict_ref):

# ... (standard calculations as in previous scripts) ...

results_dict_ref[name] = { ... metrics ... }

strategy_lbl = f"VIDYA(CMO:{cmo_period},P:[{period_vidya_min}-

{period_vidya_max}],Comm:{commission_bps_per_side}bps)"

_calc_metrics_for_vidya(strat_returns, strategy_lbl,

TRADING_DAYS_PER_YEAR, metrics_results)

# ... (benchmark metrics) ...

Metrics Summary Printing ( _print_metrics_summary ): Formats and prints results.

1. Price & VIDYA Filter: With Trailing Stops.
2. Chande Momentum Oscillator (CMO) & Normalized Absolute CMO: CMO values and

its normalized magnitude on a twin axis.
3. Adaptive VIDYA Period: Shows the dynamically changing EMA period.
4. Strategy Position.
5. ATR for Stop Loss.
6. Cumulative Performance (Log Scale).

def plot_vidya_results_separate_windows(df_analysis, strategy_params):

# ... (plotting logic for 6 distinct figures) ...

plt.show() # Called after each figure configuration in the script

Momentum-Driven Adaptation: Uses the Chande Momentum Oscillator (CMO)
magnitude to adapt the EMA's smoothing period, making the filter faster in strong
momentum environments and slower in weak momentum ones.
pandas_ta  Dependency: Relies on the pandas_ta  library for the CMO calculation.
Iterative EMA: The VIDYA is an adaptive EMA calculated iteratively.
Commission Modeling: Explicitly includes commissions.
Daily Timeframe.



10. Volume-Weighted Adaptive EMA (VW-AEMA)
Crossover Strategy
10.1. Overview and Objective
Overview:
This strategy implements an adaptive Exponential Moving Average (EMA) where the
smoothing period is dynamically adjusted based on recent trading volume. The core idea is
that high trading volume often accompanies significant price moves and might warrant a
more responsive filter. Conversely, low volume might suggest a less convicted market, where
a smoother filter is preferable.

Objective:
The primary objective is to create an EMA filter that adapts its responsiveness to volume
conditions:

10.2. Key Concepts: Volume-Based Adaptation
The "weighting" in this strategy comes from the selection of the EMA period based on
volume activity. Instead of directly incorporating volume into the EMA formula (like a
traditional VWMA), this strategy uses a binary condition (volume above/below its EMA) to
switch between two predefined EMA periods for the price data. This effectively gives more
weight to recent prices (by using a shorter EMA) during periods identified as "high volume."

10.3. Key Indicators and Components

When the previous day's volume is higher than its own EMA (Exponential Moving
Average of volume), a shorter EMA period is used for the price filter, making it more
sensitive to recent price action.
When the previous day's volume is lower than or equal to its EMA, a longer, base
EMA period is used, resulting in a smoother price filter.
Trading signals are generated from crossovers of the closing price with this Volume-
Weighted Adaptive EMA (VW-AEMA). The strategy includes an ATR-based trailing stop-
loss and accounts for trading commissions.

Volume EMA ( vol_ema_col ): An Exponential Moving Average of the daily trading
volume.

# Volume EMA

df[vol_ema_col] = df['Volume'].ewm(span=volume_ema_period_param,

adjust=False).mean()



10.4. Script Parameters (Function Arguments)

The strategy is encapsulated in run_vw_aema_backtest :

Adaptive EMA Period ( adaptive_period_col ): This period switches between
short_ema_period_param  and base_ema_period_param  based on whether the previous
day's volume was above its EMA.

# Determine Adaptive EMA Period (based on lagged Volume condition)

high_volume_condition = df['Volume'].shift(1) > df[vol_ema_col].shift(1)

df[adaptive_period_col] = np.where(high_volume_condition,

short_ema_period_param, base_ema_period_param)

df[adaptive_period_col].fillna(base_ema_period_param, inplace=True) #

Fill initial NaNs

df[adaptive_period_col] = df[adaptive_period_col].astype(int)

Volume-Weighted Adaptive EMA (VW-AEMA Filter - vw_aema_filter_col ): The EMA
of the closing price, calculated iteratively with its period (and thus alpha) changing daily
based on adaptive_period_col .

df['Alpha_Adaptive_VW'] = 2 / (df[adaptive_period_col] + 1) # Alpha uses

current day's adaptive period

df[vw_aema_filter_col] = np.nan

# ... (Seeding the first value) ...

first_valid_alpha_idx = df['Alpha_Adaptive_VW'].first_valid_index()

df.loc[first_valid_alpha_idx, vw_aema_filter_col] =

df.loc[first_valid_alpha_idx, 'Close']

for i_loop in range(start_loc_for_ema_loop + 1, len(df)):

idx_today = df.index[i_loop]; idx_prev = df.index[i_loop-1]

alpha_val = df.loc[idx_today, 'Alpha_Adaptive_VW']

current_close_val = df.loc[idx_today, 'Close']

prev_filtered_price_val = df.loc[idx_prev, vw_aema_filter_col]

# ... (NaN checks) ...

df.loc[idx_today, vw_aema_filter_col] = alpha_val *

current_close_val + (1 - alpha_val) * prev_filtered_price_val

# ... (fillna logic for vw_aema_filter_col) ...

Average True Range (ATR - atr_col_name_sl ): For the trailing stop-loss.

df['H-L_sl'] = df['High'] - df['Low']; df['H-PC_sl'] = (df['High'] -

df['Close'].shift(1)).abs(); #...

df['TR_sl'] = df[['H-L_sl','H-PC_sl','L-PC_sl']].max(axis=1);

df[atr_col_name_sl] =

df['TR_sl'].rolling(window=atr_window_sl_param).mean()



10.5. Data Handling

10.6. Trading Logic (within run_vw_aema_backtest )

Daily iteration. Signals from previous day's close vs. VW-AEMA; trades at current day's
Open .

10.6.1. Adaptive EMA Period Calculation

The adaptive_period_col  is determined based on the lagged volume condition (volume vs.
its EMA), as detailed in section 10.3.

10.6.2. Iterative VW-AEMA Filter Calculation

The vw_aema_filter_col  is computed iteratively using the daily Alpha_Adaptive_VW
(derived from adaptive_period_col ), as shown in section 10.3.

10.6.3. Signal Generation Conditions

def run_vw_aema_backtest(

ticker="SPY",

start_date_str="2010-01-01",

end_date_str="2024-12-31",

volume_ema_period_param=20,

base_ema_period_param=50,

short_ema_period_param=20, # Must be < base_ema_period_param

atr_window_sl_param=14,

atr_multiplier_sl_param=2.0,

commission_bps_per_side_param=1.0,

plot_results=True,

verbose=True

):

# ... (parameter validation: short_ema_period_param < base_ema_period_param)

...

Data Download: Standard daily OHLCV data fetch. Volume is crucial, so a check
df['Volume'] = df['Volume'].replace(0, 1)  is included to prevent division by zero
or issues if volume is reported as zero.

# --- 1. Download Data ---

df_raw = yf.download([ticker], start=start_date_str, end=end_date_str,

auto_adjust=False, progress=False)

# ... (error handling, droplevel, column selection) ...

df['Volume'] = df['Volume'].replace(0, 1) # Avoid issues with zero

volume



Target position ( target_pos ) from prev_close  vs. prev_filtered_price  (the VW-AEMA):

10.6.4. Entry Conditions

If target_pos  suggests a new trade or a flip, entry is at today_open . Commissions applied.

10.6.5. Exit Conditions

Mainly via ATR Trailing Stop-Loss. Flips also cause exits.

10.6.6. Position Sizing, P&L, and Commission Calculation

# (Inside backtesting loop, after stop-loss check)

target_pos = 0

if prev_close > prev_filtered_price: target_pos = 1 # Signal Long

elif prev_close < prev_filtered_price: target_pos = -1 # Signal Short

# (If target_pos != 0 and target_pos != current_pos)

if current_pos != 0 and pd.notna(current_entry_gross): # It's a

flip

# ... (calculate pnl_exit_leg_net with commission) ...

current_pos = target_pos; current_entry_gross = today_open

if current_pos == 1: # Entering New Long

pnl_entry_leg_day = ((today_close / current_entry_gross) -

1) - comm_rate_val

# ... (set init_ts and current_ts using

atr_multiplier_sl_param) ...

elif current_pos == -1: # Entering New Short

pnl_entry_leg_day = (-((today_close / current_entry_gross) -

1)) - comm_rate_val

# ... (set init_ts and current_ts using

atr_multiplier_sl_param) ...

ATR Trailing Stop-Loss Check: (Identical logic to previous adaptive filter scripts,
includes commission)
Trailing Stop Adjustment: (Identical logic to previous adaptive filter scripts, using
atr_multiplier_sl_param )

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
Commissions ( comm_rate_val ): Applied as commission_bps_per_side_param /
10000.0 .
P&L Calculation ( Strategy_Daily_Return ): Daily P&L reflecting trades and
commissions.



10.7. Performance Evaluation

Standard metrics are calculated.

10.8. Plotting Results (via plot_vw_aema_results  function)
A separate function generates six plots:

10.9. Unique Features & Notes

Max Drawdown: Uses the calculate_max_drawdown  helper.
Metrics Calculation ( _calc_metrics_for_vw_aema ): Computes key performance
indicators.

# (Inside run_vw_aema_backtest)

def _calc_metrics_for_vw_aema(returns, name, tdpy, results_dict_ref): #

Unique name

# ... (standard calculations as in previous scripts) ...

results_dict_ref[name] = { ... metrics ... }

strategy_lbl = f"VW-AEMA(VolEMA:{volume_ema_period_param},P:

[{short_ema_period_param}/{base_ema_period_param}],Comm:

{commission_bps_per_side_param}bps)"

_calc_metrics_for_vw_aema(strat_returns, strategy_lbl,

TRADING_DAYS_PER_YEAR, metrics_results)

# ... (benchmark metrics) ...

Metrics Summary Printing ( _print_metrics  - note: name changed from
_print_metrics_summary in this script): Formats and prints results.

1. Price & Volume-Weighted Adaptive EMA (VW-AEMA) Filter: With Trailing Stops.
2. Volume and its EMA.
3. Adaptive EMA Period: Shows the switching between short and base periods.
4. Strategy Position.
5. ATR for Stop Loss.
6. Cumulative Performance (Log Scale).

def plot_vw_aema_results(df_analysis, strategy_params):

# ... (plotting logic for 6 distinct figures, using corrected param

names for labels) ...

plt.show() # Called after each figure configuration in the script

Volume-Driven Adaptation: The EMA period is directly switched based on whether the
previous day's volume was above its own EMA, making the filter more responsive during
high-volume periods.



Binary Period Switch: Unlike some other adaptive filters that interpolate periods, this
one makes a binary choice between a short and a base period.
Iterative EMA: The VW-AEMA is calculated iteratively due to the daily potential change
in its underlying period.
Commission Modeling: Explicitly included.
Daily Timeframe.


