
Volatility Strategies Manual
This guide provides an overview of each trading strategy included in the package,
with descriptions of their objectives, key components, parameters, logic, and notes
on their unique features.

A Note on Backtesting: All strategies presented are for educational and illustrative
purposes. The Python scripts provide a framework for backtesting these concepts. Past
performance is not indicative of future results. Thorough testing, optimization, risk
management, and consideration of transaction costs (slippage, commissions) are crucial
before deploying any trading strategy with real capital. The code snippets included in the
manual are illustrative and extracted from the provided standalone Python scripts.
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1. Empirical-Mode Decomposition (EMD) Channels
Strategy
1.1. Overview and Objective
Overview:
This strategy utilizes Empirical-Mode Decomposition (EMD) to decompose a financial time
series (closing prices) into its Intrinsic Mode Functions (IMFs). By summing the highest
frequency IMFs, it creates a "noise envelope." A "denoised" signal is then derived by
subtracting this noise envelope from the original price. Trading channels are constructed
around this denoised signal.

Objective:
The primary goal is to trade breakouts from these EMD-derived channels. The strategy aims
to capture significant price movements that emerge when prices push beyond the
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dynamically estimated noise boundaries. An Average True Range (ATR) based trailing stop-
loss is implemented for risk management.

1.2. Key Indicators and Components

The strategy relies on several calculated series derived from the price data:

Input Price Data ( df ): OHLCV data downloaded using yfinance .

# --- 1. Download Data ---

df_raw = yf.download(

[ticker],

start=start_date,

end=end_date,

auto_adjust=False, # User preference

progress=False

)

if isinstance(df_raw.columns, pd.MultiIndex): # User preference

df = df_raw.droplevel(level=1, axis=1)

else:

df = df_raw

df = df[['Open', 'High', 'Low', 'Close', 'Volume']].copy()

Empirical Mode Decomposition (EMD) & Intrinsic Mode Functions (IMFs): The
PyEMD  library is used to decompose the closing price series.

# Step 2.1: EMD and IMF Processing

price_series_np = df['Close'].values

emd_analyzer = EMD.EMD()

try:

imfs_all = emd_analyzer.emd(price_series_np)

except AttributeError: # Fallback for potentially older PyEMD syntax

imfs_all = emd_analyzer(price_series_np)

Sum of Top K IMFs (Noise Envelope - sum_top_k_imfs_col ): The highest frequency
IMFs are summed to represent noise.

# Ensure we don't try to sum more IMFs than available

actual_k_to_sum = min(emd_top_k_imfs, num_imfs_generated - 1 if

num_imfs_generated > 1 else 1)

# ... (warning if actual_k_to_sum differs from emd_top_k_imfs) ...

sum_top_k_imfs_array = np.sum(imfs_all[:actual_k_to_sum, :], axis=0)

# Assign to DataFrame

df[sum_top_k_imfs_col] = np.nan

len_to_assign = min(len(df), len(sum_top_k_imfs_array))

df.iloc[:len_to_assign, df.columns.get_loc(sum_top_k_imfs_col)] =



1.3. Strategy Parameters

The user-configurable parameters are defined at the beginning of the script:

sum_top_k_imfs_array[:len_to_assign]

df[sum_top_k_imfs_col] =

df[sum_top_k_imfs_col].fillna(method='bfill').fillna(method='ffill')

Denoised Signal ( denoised_signal_col ): The original signal with the noise envelope
removed.

# Step 2.2: Create "Denoised" Signal and EMD Bands

df[denoised_signal_col] = df['Close'] - df[sum_top_k_imfs_col]

EMD Channels ( upper_band_col_emd , lower_band_col_emd ): Bands created around
the denoised signal.

df[upper_band_col_emd] = df[denoised_signal_col] + band_multiplier_emd *

np.abs(df[sum_top_k_imfs_col])

df[lower_band_col_emd] = df[denoised_signal_col] - band_multiplier_emd *

np.abs(df[sum_top_k_imfs_col])

Average True Range (ATR - atr_col_name_sl ): Used for the trailing stop-loss.

# Step 2.3: ATR for Stop Loss

df['H-L_sl'] = df['High'] - df['Low']

df['H-PC_sl'] = np.abs(df['High'] - df['Close'].shift(1))

df['L-PC_sl'] = np.abs(df['Low'] - df['Close'].shift(1))

df['TR_sl'] = df[['H-L_sl', 'H-PC_sl', 'L-PC_sl']].max(axis=1)

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()

# --- Parameters ---

ticker = "BTC-USD" # Example: "AAPL", "EURUSD=X"

start_date = "2021-01-01" # EMD benefits from longer series

end_date = "2024-12-31"

# EMD Parameters

emd_top_k_imfs = 2 # Number of top (highest frequency) IMFs to sum

for the noise envelope

# IMF0, IMF1, ... IMF(K-1) will be summed.

# EMD Channel Parameters

band_multiplier_emd = 1.0 # Multiplier for the absolute sum of top K IMFs

to set band width

# ATR Trailing Stop Parameters



1.4. Entry Logic

Entries are executed at the Open  price of the current day ( today_open ) if conditions based
on the previous day's data are met. The logic is iterated within the main backtesting loop.

Python

atr_window_sl = 14

atr_multiplier_sl = 1.0

# Trading days per year

# TRADING_DAYS_PER_YEAR = 252

TRADING_DAYS_PER_YEAR = 365

# --- 3. Strategy Logic & Backtesting Loop ---

# ... (initialization of active_position, entry_price, active_trailing_stop)

...

for i in range(len(df_analysis)):

# ... (data loading for today_idx, prev_idx, prev_prev_idx) ...

# ... (critical value checks and continue if NaN) ...

# If not stopped out by ATR (action_taken_this_step is False)

if not action_taken_this_step:

target_signal_position = 0

# Long Breakout Signal: prev_close broke above prev_upper_band

if prev_close > prev_upper_band:

is_fresh_breakout_up = True

if prev_prev_idx: # Check bar before previous

prev_prev_close = df_analysis.at[prev_prev_idx, 'Close']

prev_prev_upper_band = df_analysis.at[prev_prev_idx,

upper_band_col_emd]

if pd.notna(prev_prev_close) and

pd.notna(prev_prev_upper_band) and prev_prev_close > prev_prev_upper_band:

is_fresh_breakout_up = False # Already broken out

if is_fresh_breakout_up or current_day_assumed_position == 0 :

target_signal_position = 1

# Short Breakout Signal: prev_close broke below prev_lower_band

elif prev_close < prev_lower_band:

is_fresh_breakout_down = True

if prev_prev_idx:

prev_prev_close = df_analysis.at[prev_prev_idx, 'Close']

prev_prev_lower_band = df_analysis.at[prev_prev_idx,

lower_band_col_emd]



1.5. Exit Logic

Exits are primarily handled by an ATR-based trailing stop-loss. Positions are also exited if an
opposing entry signal is generated (stop-and-reverse).

if pd.notna(prev_prev_close) and

pd.notna(prev_prev_lower_band) and prev_prev_close < prev_prev_lower_band:

is_fresh_breakout_down = False

if is_fresh_breakout_down or current_day_assumed_position == 0:

target_signal_position = -1

# Execute if signal changes or entering from flat

if target_signal_position != 0 and target_signal_position !=

current_day_assumed_position :

# ... (calculate pnl_exit_component if flipping position) ...

current_day_assumed_position = target_signal_position

if current_day_assumed_position == 1: # Entering New Long at

today_open

current_day_assumed_entry_price = today_open

# ... (calculate pnl_entry_component, set initial_ts and

current_day_assumed_trailing_stop) ...

elif current_day_assumed_position == -1: # Entering New Short at

today_open

current_day_assumed_entry_price = today_open

# ... (calculate pnl_entry_component, set initial_ts and

current_day_assumed_trailing_stop) ...

# ... (calculate pnl_for_day based on flip or new entry) ...

action_taken_this_step = True

ATR Trailing Stop-Loss (checked at the start of each iteration for an active
position): Python

# 1. Check ATR Stop Loss

if current_day_assumed_position == 1 and

pd.notna(current_day_assumed_trailing_stop) and

pd.notna(current_day_assumed_entry_price):

if today_low <= current_day_assumed_trailing_stop:

exit_price_sl = min(today_open,

current_day_assumed_trailing_stop)

pnl_for_day = (exit_price_sl / current_day_assumed_entry_price)

- 1

current_day_assumed_position = 0



1.6. Backtesting & Performance Evaluation

The script includes a loop for backtesting and functions to calculate performance.

action_taken_this_step = True

elif current_day_assumed_position == -1 and

pd.notna(current_day_assumed_trailing_stop) and

pd.notna(current_day_assumed_entry_price):

if today_high >= current_day_assumed_trailing_stop:

exit_price_sl = max(today_open,

current_day_assumed_trailing_stop)

pnl_for_day = -((exit_price_sl /

current_day_assumed_entry_price) - 1)

current_day_assumed_position = 0

action_taken_this_step = True

if action_taken_this_step: # If stopped out

current_day_assumed_entry_price = np.nan

current_day_assumed_trailing_stop = np.nan

Trailing Stop Adjustment (while holding a position and not stopped out): Python

# (within the 'else' block of 'if not action_taken_this_step', if 'elif

current_day_assumed_position != 0:')

elif current_day_assumed_position != 0: # Holding position

if current_day_assumed_position == 1:

# ... (calculate pnl_for_day) ...

current_day_assumed_trailing_stop =

max(current_day_assumed_trailing_stop, today_close - atr_multiplier_sl *

today_atr_sl)

elif current_day_assumed_position == -1:

# ... (calculate pnl_for_day) ...

current_day_assumed_trailing_stop =

min(current_day_assumed_trailing_stop, today_close + atr_multiplier_sl *

today_atr_sl)

Exit due to Signal Reversal: If target_signal_position  is opposite to
current_day_assumed_position , the old position is exited (PnL calculated based on
today_open ) before the new position is entered. This is handled within the "Entry Logic"
section ( if target_signal_position != 0 and target_signal_position !=
current_day_assumed_position : ).

Daily Return Calculation: Strategy returns are calculated daily within the loop. Python



1.7. Plotting Results

The script generates a multi-panel plot for visual analysis if sufficient data is available.

Python

# Assign results for the day

df_analysis.at[today_idx, 'Position'] = active_position

df_analysis.at[today_idx, 'Strategy_Daily_Return'] = pnl_for_day

df_analysis.at[today_idx, 'Trailing_Stop'] = active_trailing_stop

Cumulative Returns and Alignment: Python

# --- Post-Loop Calculations ---

df_analysis['Strategy_Daily_Return'].fillna(0, inplace=True)

df_analysis['Cumulative_Strategy_Return'] = (1 +

df_analysis['Strategy_Daily_Return']).cumprod()

df_analysis['Cumulative_Buy_Hold_Return'] = (1 +

df_analysis['Daily_Return'].fillna(0)).cumprod()

# Align Buy & Hold to start at the same point as strategy

# ... (logic for Cumulative_Buy_Hold_Return_Aligned) ...

Performance Metrics Function ( calc_performance_metrics ): Python

# --- 4. Performance Metrics ---

def calc_performance_metrics(returns, name,

trading_days_per_year=TRADING_DAYS_PER_YEAR):

if len(returns) < 2:

# ... (handle insufficient data) ...

return

avg_daily_return = returns.mean()

std_daily_return = returns.std()

ann_ret = avg_daily_return * trading_days_per_year

ann_vol = std_daily_return * np.sqrt(trading_days_per_year)

sharpe_ratio = ann_ret / ann_vol if ann_vol > 1e-7 else np.nan

cumulative_return_factor = (1 + returns).prod()

# ... (print metrics) ...

# Call for strategy and buy & hold

calc_performance_metrics(strat_returns, strategy_name_detail)

calc_performance_metrics(bh_returns, f"{ticker} Buy & Hold")



1.8. Unique Features & Notes

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 5:

fig, axs = plt.subplots(5, 1, figsize=(15, 25), sharex=True)

# Panel 0: Price, Denoised Signal, EMD Bands, Trailing Stops

axs[0].plot(df_analysis.index, df_analysis['Close'], ...)

axs[0].plot(df_analysis.index, df_analysis[denoised_signal_col], ...)

# ... (other plots for panel 0) ...

# Panel 1: Sum of Top K IMFs

axs[1].plot(df_analysis.index, df_analysis[sum_top_k_imfs_col], ...)

# ... (plot individual IMFs if actual_k_to_sum <=3) ...

# Panel 2: Strategy Position

axs[2].plot(df_analysis.index, df_analysis['Position'], ...)

# Panel 3: ATR for Trailing Stop

axs[3].plot(df_analysis.index, df_analysis[atr_col_name_sl], ...)

# Panel 4: Cumulative Performance Comparison

axs[4].plot(df_analysis.index,

df_analysis['Cumulative_Strategy_Return'], ...)

axs[4].plot(df_analysis.index,

df_analysis['Cumulative_Buy_Hold_Return_Aligned'], ...)

plt.tight_layout()

plt.show()

Adaptive Channels: The EMD channels dynamically adapt to changing market structure
and volatility as reflected by the IMFs.
Noise Filtering Concept: The strategy attempts to filter out market "noise" by identifying
and using the highest frequency IMFs.
EMD Dependency: Relies heavily on the PyEMD  library and the quality of the EMD
decomposition. The script includes a try-except  block for importing PyEMD  and
provides installation instructions if not found.
Computational Cost: EMD can be computationally intensive, especially for long data
series.
Parameter Sensitivity: Strategy performance can be sensitive to emd_top_k_imfs ,
band_multiplier_emd , and ATR parameters. Tuning may be required for different
assets or timeframes.



2. HAR-Model Volatility-Forecast Breakout Strategy
2.1. Overview and Objective
Overview:

This strategy employs a Heterogeneous Autoregressive (HAR) model to forecast daily
realized volatility. The HAR model is a simple yet effective time series model that predicts
future volatility using a linear combination of past realized volatilities observed over different
time horizons (typically daily, weekly, and monthly averages). The strategy then uses these
forecasts to identify potential volatility breakout events.

Objective:

The primary objective is to enter a long position when the actual realized volatility on a given
day significantly exceeds the HAR model's forecasted volatility for that same day. The
premise is that such a breakout might signal the beginning of a higher volatility period,
potentially leading to larger price movements. The position is typically held for the next day.

2.2. Key Functions and Components

The script is structured with several helper functions to manage data acquisition, feature
engineering, backtesting, and results presentation.

"Fresh Breakout" Logic: Includes a condition to prefer initial breakouts over sustained
periods outside the bands.
Data Requirements: Works best with longer time series for stable EMD results. A
warning is issued for short series (less than 500 data points).
Backtest Assumptions: Assumes trades at open, no slippage or commissions.
Column Naming: Dynamically generated column names (e.g., sum_top_k_imfs_col ,
upper_band_col_emd ) are used for clarity and to reflect key parameters in the column
titles.
Warnings Suppression: The script filters some common warnings from libraries to keep
the output cleaner.

Data Acquisition (get_data function): This function downloads historical stock data using
yfinance, applying user-specified preferences for auto_adjust=False and droplevel for
MultiIndex columns from yfinance. It also standardizes the 'Close' price to use 'Adj Close'
if available. Python

# --- Data Acquisition (Adhering to User Preferences) ---

def get_data(ticker, start_date, end_date):

    """



    Downloads historical stock data using yfinance.

    Applies user-specified download preferences.

    """

    if isinstance(ticker, str):

        tickers_list = [ticker]

    else:

        tickers_list = ticker # Assuming it's already a list

    data = yf.download(

        tickers=tickers_list,

        start=start_date,

        end=end_date,

        auto_adjust=False,  # User preference

        progress=False

    )

    if data.empty:

        print(f"No data downloaded for {ticker}. Check ticker symbol or

date range.")

        return pd.DataFrame()

    if isinstance(data.columns, pd.MultiIndex):

        if len(tickers_list) == 1:

            data = data.droplevel(axis=1, level=1) # User preference

    if 'Adj Close' in data.columns:

        data['Close'] = data['Adj Close']

    elif 'Close' not in data.columns:

        raise ValueError("DataFrame must contain 'Close' or 'Adj Close'

column.")

    cols_to_use = ['Open', 'High', 'Low', 'Close', 'Volume']

    data = data[[col for col in cols_to_use if col in data.columns]]

    return data

Realized Volatility Calculation (calculate_realized_volatility function): This function
calculates daily log returns and uses their absolute values as a proxy for daily realized
volatility (rv). Python

# --- Feature Engineering ---

def calculate_realized_volatility(df):

    """

    Calculates daily log returns and realized volatility (absolute log



2.3. Main Execution Parameters
These parameters are set in the if __name__ == '__main__':  block and control the overall
execution of the backtest:

Python

returns).

    """

    df['log_return'] = np.log(df['Close'] / df['Close'].shift(1))

    # Using absolute log returns as a proxy for daily realized

volatility

    df['rv'] = df['log_return'].abs()

    return df.dropna() # Drop first NaN from log_return and rv

HAR Feature Preparation (prepare_har_features function): This function creates the
lagged realized volatility features required by the HAR model: daily lag (rv_lag_1), 5-day
average lag (rv_lag_weekly), and 22-day average lag (rv_lag_monthly). These lags are
based on information available up to day t-1 for predicting volatility on day t. Python

def prepare_har_features(df):

    """

    Prepares lagged features for the HAR model.

    The model predicts RV_t using information up to t-1.

    RV_k = beta_0 + beta_d*RV_{k-1} + beta_w*RV_avg_{k-1 to k-5} +

beta_m*RV_avg_{k-1 to k-22}

    """

    df['rv_lag_1'] = df['rv'].shift(1) # RV_{k-1}

    df['rv_lag_weekly'] = df['rv'].shift(1).rolling(window=5).mean() #

Avg RV over past 5 days, ending at k-1

    df['rv_lag_monthly'] = df['rv'].shift(1).rolling(window=22).mean() #

Avg RV over past 22 days, ending at k-1

    return df.dropna() # Drop NaNs from lags and rolling means

if __name__ == '__main__':

    TICKER = 'BTC-USD'

    START_DATE = '2020-01-01'

    END_DATE = '2024-12-31'

    HAR_TRAIN_WINDOW = 30        # Days for rolling HAR model training

    BREAKOUT_THRESHOLD_PCT = 10  # Enter if RV_actual > RV_forecast by this

X%



2.4. Trading Logic (within run_har_breakout_backtest
function)

The core trading logic resides in the run_har_breakout_backtest  function. It iterates
through the data, re-training the HAR model and generating forecasts on a rolling basis.

2.4.1. HAR Model Training and Forecasting

On each day t  in the backtest (after an initial warm-up period equal to har_train_window ),
the HAR model is trained using data up to t-1 .

Python

TICKER  (String): The asset to backtest.
START_DATE  (String): Start date for data download.
END_DATE  (String): End date for data download.
HAR_TRAIN_WINDOW  (Integer): The length of the rolling window (in days) used to train the
HAR model.
BREAKOUT_THRESHOLD_PCT  (Integer/Float): The percentage by which actual realized
volatility must exceed forecasted realized volatility to trigger a breakout signal.

# (Inside run_har_breakout_backtest loop)

for t_idx in range(har_train_window, len(df)):

    current_time = df.index[t_idx]

    train_df = df.iloc[t_idx - har_train_window : t_idx]

    Y_train = train_df['rv']

    X_train_base = train_df[feature_names] # feature_names = ['rv_lag_1',

'rv_lag_weekly', 'rv_lag_monthly']

    # ... (NaN checks for X_train_base and Y_train) ...

    X_train = sm.add_constant(X_train_base)

    model = sm.OLS(Y_train, X_train, missing='drop').fit()

    # Forecast RV for current day 't' using features from 't-1' (which are

in df.iloc[t_idx])

    current_X_base_for_pred = df.iloc[t_idx:t_idx+1][feature_names]

    # ... (NaN check for current_X_base_for_pred) ...

    current_X_for_pred_df = sm.add_constant(current_X_base_for_pred,

has_constant='add')

    rv_forecast_t_series = model.predict(current_X_for_pred_df)



The model ( sm.OLS ) predicts the realized volatility ( rv ) for the current day t
( rv_forecast_t ) using the lagged features available from day t-1 .

2.4.2. Entry Condition

A long position is signaled if the actual realized volatility on day t  ( rv_actual_t ) exceeds
the forecasted realized volatility for day t  ( rv_forecast_t ) by more than the
BREAKOUT_THRESHOLD_PCT .

Python

If a breakout is detected on day t , a long position ( 1.0 ) is recorded for the next day ( t+1 ).

2.4.3. Position Sizing & Holding Period

2.4.4. Exit Condition

There is no explicit stop-loss or take-profit mechanism within the
run_har_breakout_backtest  loop for an active trade. Exits are implicitly managed:

# ... (extraction of rv_forecast_t from series) ...

    forecasts.loc[current_time] = rv_forecast_t

# (Inside run_har_breakout_backtest loop, after forecast)

rv_actual_t = df['rv'].iloc[t_idx]

if pd.notna(rv_actual_t) and pd.notna(rv_forecast_t):

if rv_actual_t > rv_forecast_t * breakout_multiplier: #

breakout_multiplier = 1 + (BREAKOUT_THRESHOLD_PCT / 100.0)

if t_idx + 1 < len(df):

positions.loc[df.index[t_idx + 1]] = 1.0

Position Sizing: The strategy takes a fixed position of 1.0  (long) when a signal occurs.
It does not employ fractional sizing.
Holding Period: The position is entered on day t+1  based on the signal from day t .
The calculation strategy_returns = positions * df['log_return']  implies that the
return for the position is based on the log return of day t+1 . Since positions are re-
evaluated daily, and a position is only set to 1.0  for the next day if a signal occurs, this
effectively results in a 1-day holding period for each trade. If no new signal occurs, the
position for the subsequent day defaults to 0.0  (flat).

The position is held for one day (day t+1 ).
On day t+1 , the HAR model is re-trained, a new forecast is made for day t+1 's
volatility, and the actual RV for t+1  is observed.



2.5. Performance Evaluation ( calculate_performance_metrics
function)

The script calculates various performance metrics for the strategy and a buy-and-hold
benchmark. Log returns are primarily used.

Python

Metrics include: Total Cumulative Return, Annualized Return (Geometric), Annualized
Volatility (Log Returns), Sharpe Ratio, Max Drawdown, approximate Number of Trades, and
Win Rate (of active trade days).

A new decision to hold a position for day t+2  is made based on whether
rv_actual_t+1  breaks out above rv_forecast_t+1 . If not, the position for t+2
becomes 0.0  (flat), effectively exiting any position held on t+1 .

def calculate_performance_metrics(log_returns, label="Strategy"):

# ... (NaN/empty checks) ...

simple_returns = np.exp(log_returns) - 1

total_return_cumulative = np.exp(log_returns.sum()) - 1

num_days = len(log_returns)

annualized_return = (np.exp(log_returns.sum()))**(252.0/num_days) - 1 if

num_days > 0 else 0

annualized_volatility = log_returns.std() * np.sqrt(252)

sharpe_ratio = (np.exp(log_returns.mean() * 252) -1) /

annualized_volatility if annualized_volatility != 0 else 0

cumulative_returns_abs = np.exp(log_returns.cumsum())

peak = cumulative_returns_abs.expanding(min_periods=1).max()

drawdown = (cumulative_returns_abs - peak) / peak

max_drawdown_pct = drawdown.min()

# Approximate number of trades (assumes each block of non-zero positions

is one trade)

num_trades = (log_returns != 0).astype(int).diff().fillna(0).abs().sum()

/ 2

active_days = log_returns[log_returns != 0]

win_rate = (active_days > 0).sum() / len(active_days) if

len(active_days) > 0 else 0

# ... (print statements for metrics) ...



2.6. Plotting Results ( plot_results  function)

The plot_results  function generates several charts to visualize the strategy's performance
and behavior:

1. Cumulative Returns: Compares the strategy's cumulative returns (exponentiated
cumulative log returns) against a buy-and-hold benchmark.

Python

# Cumulative Log Returns

plt.figure(figsize=(12, 6))

strategy_log_returns.cumsum().apply(np.exp).plot(label=f'{ticker_name}

Strategy Cumulative Returns', lw=2)

# ... (benchmark plotting) ...

plt.title(f'Cumulative Returns: {ticker_name} HAR Volatility Breakout

vs. Benchmark')

# ... (labels, legend, show) ...

2. Actual vs. Forecasted Volatility: Shows the daily actual realized volatility, the HAR
model's forecasted volatility, and scatter points indicating when volatility breakout signals
occurred.

Python

# Actual vs. Forecasted RV & Breakout Signals

plt.figure(figsize=(14, 7))

analysis_df['Actual_RV'].plot(label='Actual Realized Volatility

(Daily)', alpha=0.7)

analysis_df['Forecast_RV'].plot(label='HAR Forecasted Volatility',

linestyle='--', alpha=0.9)

breakout_signals = analysis_df[analysis_df['Position'].shift(-1) == 1.0]

if not breakout_signals.empty:

    plt.scatter(breakout_signals.index, breakout_signals['Actual_RV'],

...)

# ... (title, labels, legend, show) ...

3. Strategy Positions Over Time: A step plot showing when the strategy held a long
position (1.0) or was flat (0.0).

Python

# Strategy Positions

plt.figure(figsize=(12, 4))



2.7. Unique Features & Notes

3. Intraday Volatility Breakout Strategy
3.1. Overview and Objective

Overview:

This strategy operates on intraday (typically 5-minute) price bars. It identifies periods of low
volatility, where the trading range has compressed, by comparing the current Average True
Range (ATR) to its moving average. When such a compression is detected, the strategy
anticipates a potential breakout.

Objective:

The primary objective is to enter a trade (long or short) when the price breaks out of a
recently established rolling high/low channel, but only if the breakout occurs during a period
of identified range compression. The aim is to capture sharp price movements that often

analysis_df['Position'].plot(label='Strategy Position',

drawstyle='steps-post')

# ... (title, labels, legend, show) ...

Volatility Forecasting Model: Utilizes a formal statistical model (HAR via OLS) to
forecast volatility, rather than relying solely on fixed indicator rules.
Rolling Window Training: The HAR model is re-trained on a rolling window, allowing it
to adapt to changing market conditions over time.
Breakout Confirmation: The strategy waits for actual realized volatility to confirm a
breakout above the forecast, rather than trading on the forecast alone.
Long-Only: This implementation is a long-only strategy, entering on positive volatility
shocks.
1-Day Holding Period: Trades are implicitly held for one day.
Proxy for Realized Volatility: Uses absolute daily log returns as a proxy for realized
volatility. More sophisticated measures (e.g., using intraday data) could be used if
available.
Parameter Sensitivity: The HAR_TRAIN_WINDOW  and BREAKOUT_THRESHOLD_PCT  are key
parameters that can significantly affect performance and should be tuned.
Data Requirements: Requires sufficient historical data to cover the initial largest HAR
lag (22 days) plus the HAR_TRAIN_WINDOW  before backtesting can effectively begin. The
script includes a check for this.
Statsmodels Dependency: Relies on statsmodels  for OLS regression.



follow periods of very low volatility. An ATR-based trailing stop-loss is used for risk
management on active trades.

3.2. Key Indicators and Components

The strategy uses several indicators calculated on the intraday bars:

Rolling Price Channel ( upper_channel_col , lower_channel_col ): Defines the recent
trading range. Python

# Rolling Channel

df[upper_channel_col] = df['High'].rolling(window=channel_window).max()

df[lower_channel_col] = df['Low'].rolling(window=channel_window).min()

ATR for Range Compression Analysis:

Python

atr_calc_col : The primary ATR calculation.
atr_ma_comp_col : A moving average of the atr_calc_col .
is_compressed_col : A boolean flag indicating if the range is compressed
( atr_calc_col  is significantly below its MA).

# ATR for Range Compression Calculation

df['H-L_calc'] = df['High'] - df['Low']

df['H-PC_calc'] = np.abs(df['High'] - df['Close'].shift(1))

df['L-PC_calc'] = np.abs(df['Low'] - df['Close'].shift(1))

df['TR_calc'] = df[['H-L_calc', 'H-PC_calc', 'L-PC_calc']].max(axis=1)

df[atr_calc_col] = df['TR_calc'].rolling(window=atr_calc_window).mean()

df[atr_ma_comp_col] =

df[atr_calc_col].rolling(window=atr_ma_window_for_compression).mean()

df[is_compressed_col] = df[atr_calc_col] < (df[atr_ma_comp_col] *

atr_compression_factor)

ATR for Trailing Stop-Loss ( atr_tsl_col ): Used to manage risk on open positions.
Python

# ATR for Trailing Stop Loss

df['H-L_tsl'] = df['High'] - df['Low']

df['H-PC_tsl'] = np.abs(df['High'] - df['Close'].shift(1))

df['L-PC_tsl'] = np.abs(df['Low'] - df['Close'].shift(1))



3.3. Script Parameters

User-configurable parameters are defined at the beginning of the script:

Python

3.4. Data Handling

df['TR_tsl'] = df[['H-L_tsl', 'H-PC_tsl', 'L-PC_tsl']].max(axis=1)

df[atr_tsl_col] = df['TR_tsl'].rolling(window=atr_tsl_window).mean()

# --- Parameters ---

ticker = "SOL-USD"          # Example: "EURUSD=X", "SPY", "MSFT"

intraday_interval = "5m"

data_download_period = "30d" # Fetches last N days of data for the specified

interval

# Rolling Channel Parameters

channel_window = 3 * 12     # Number of 5-min bars for High/Low channel

(e.g., 3 hours for 5m bars)

# ATR for Range Compression

atr_calc_window = 14        # Window for calculating the 5-min ATR

atr_ma_window_for_compression = 12 # Window for the Moving Average of ATR

atr_compression_factor = 0.8 # ATR must be < (ATR_MA * factor) for

compression

# ATR Trailing Stop Parameters

atr_tsl_window = 14         # Window for ATR used in Trailing Stop Loss

atr_tsl_multiplier = 1.0    # Multiplier for ATR TSL

# Trading days per year (for annualizing metrics from daily aggregated

returns)

TRADING_DAYS_PER_YEAR = 252

if "USD" in ticker.upper() and any(crypto_sym in ticker.upper() for

crypto_sym in ['BTC', 'ETH', 'SOL', 'ADA']):

TRADING_DAYS_PER_YEAR = 365 # Crypto trades 24/7

Intraday Data Download: The script downloads intraday data using yfinance . It uses
the period  argument (e.g., "30d") as yfinance  has limitations on date ranges for very
fine intervals like "5m" (often max 60 days). Python



3.5. Trading Logic (within the main backtesting loop)
The strategy iterates bar-by-bar through the intraday data ( df_analysis ).

3.5.1. Range Compression Check

For a new trade to be considered, the range on the previous bar must have been identified
as compressed.

Python

# --- 1. Download Data ---

df_raw = yf.download(

tickers=ticker,

period=data_download_period,

interval=intraday_interval,

auto_adjust=False, # Per user preference

progress=False

).droplevel(1, 1) # Per user preference for single ticker

Timezone Localization: The script attempts to localize the DataFrame's index to UTC if
it's naive, or convert it if it's localized to a different timezone than the system's current
timezone. This is important for consistent intraday analysis. Python

if df.index.tz is None:

try:

df.index = df.index.tz_localize('UTC')

print("Localized DataFrame index to UTC.")

except Exception as e:

print(f"Could not localize index (may already be localized or

it's naive): {e}")

elif df.index.tzinfo != pd.Timestamp.now().tzinfo: # If localized but to

different zone

print(f"Converting index from {df.index.tzinfo} to

{pd.Timestamp.now().tzinfo}")

df.index = df.index.tz_convert(pd.Timestamp.now().tzinfo)

# (Inside the backtesting loop)

# Data from previous bar for signals

prev_is_range_compressed = df_analysis.at[prev_idx, is_compressed_col]

# Check for New Breakout Entries (if flat and range is compressed)



3.5.2. Entry Conditions

If flat and the previous bar's range was compressed, the strategy looks for breakouts on the
current bar:

if current_bar_assumed_position == 0 and prev_is_range_compressed:

# ... entry logic follows ...

Long Breakout: Python

Entry is assumed at the prev_upper_channel  level if price crosses it intra-bar, or at
today_open  if price gapped above.

# Long Breakout

if today_high > prev_upper_channel and today_open <= prev_upper_channel

: # Price broke upwards

entry_exec_price = prev_upper_channel # Assume entry at breakout

level

if today_low <= entry_exec_price : # Ensure price actually traded

at/above breakout

current_bar_assumed_position = 1

current_bar_assumed_entry_price = entry_exec_price

pnl_for_this_bar = (today_close /

current_bar_assumed_entry_price) - 1

initial_ts = current_bar_assumed_entry_price -

atr_tsl_multiplier * prev_atr_tsl

current_bar_assumed_trailing_stop = max(initial_ts, today_close

- atr_tsl_multiplier * today_atr_tsl)

action_occurred_this_bar = True

entered_long_this_bar = True

elif today_open > prev_upper_channel: # Gapped up over channel

entry_exec_price = today_open

# ... (similar logic for position, P&L, stop) ...

action_occurred_this_bar = True

entered_long_this_bar = True

Short Breakout: (Only if not already entered long on the same bar) Python

# Short Breakout (only if not already entered long)

if not entered_long_this_bar:

if today_low < prev_lower_channel and today_open >=

prev_lower_channel: # Price broke downwards

entry_exec_price = prev_lower_channel # Assume entry at breakout

level



3.5.3. Exit Conditions

Exits are primarily managed by an ATR-based trailing stop-loss.

Entry is assumed at the prev_lower_channel  level if price crosses it intra-bar, or at
today_open  if price gapped below.

if today_high >= entry_exec_price: # Ensure price actually

traded at/below breakout

current_bar_assumed_position = -1

current_bar_assumed_entry_price = entry_exec_price

pnl_for_this_bar = -((today_close /

current_bar_assumed_entry_price) - 1)

initial_ts = current_bar_assumed_entry_price +

atr_tsl_multiplier * prev_atr_tsl

current_bar_assumed_trailing_stop = min(initial_ts,

today_close + atr_tsl_multiplier * today_atr_tsl)

action_occurred_this_bar = True

entered_short_this_bar = True

elif today_open < prev_lower_channel: # Gapped down below channel

entry_exec_price = today_open

# ... (similar logic for position, P&L, stop) ...

action_occurred_this_bar = True

entered_short_this_bar = True

ATR Trailing Stop-Loss Check: Python

# 1. Check ATR Trailing Stop Loss (if in a position)

if current_bar_assumed_position == 1 and

pd.notna(current_bar_assumed_trailing_stop) and

pd.notna(current_bar_assumed_entry_price):

if today_low <= current_bar_assumed_trailing_stop:

exit_price_sl = min(today_open,

current_bar_assumed_trailing_stop) # Realistic exit

pnl_for_this_bar = (exit_price_sl /

current_bar_assumed_entry_price) - 1

current_bar_assumed_position = 0

action_occurred_this_bar = True

elif current_bar_assumed_position == -1 and

pd.notna(current_bar_assumed_trailing_stop) and

pd.notna(current_bar_assumed_entry_price):

if today_high >= current_bar_assumed_trailing_stop:

exit_price_sl = max(today_open,

current_bar_assumed_trailing_stop) # Realistic exit



3.5.4. Position Sizing & P&L Calculation

3.6. Performance Evaluation
Since the strategy operates on intraday bars, the bar-level returns ( Strategy_Bar_Return )
are first aggregated to daily returns. Standard performance metrics are then calculated on
these daily returns.

pnl_for_this_bar = -((exit_price_sl /

current_bar_assumed_entry_price) - 1)

current_bar_assumed_position = 0

action_occurred_this_bar = True

if action_occurred_this_bar and current_bar_assumed_position == 0: # If

stop loss was hit

current_bar_assumed_entry_price = np.nan

current_bar_assumed_trailing_stop = np.nan

Trailing Stop Adjustment (while holding a position): The trailing stop is updated at
the end of each bar if the position is maintained. Python

# (If holding a position and no stop/new entry on current bar)

if not action_occurred_this_bar and current_bar_assumed_position != 0:

if current_bar_assumed_position == 1:

# ... (calculate pnl_for_this_bar based on Close vs prev_close)

...

current_bar_assumed_trailing_stop =

max(current_bar_assumed_trailing_stop, today_close - atr_tsl_multiplier

* today_atr_tsl)

elif current_bar_assumed_position == -1:

# ... (calculate pnl_for_this_bar) ...

current_bar_assumed_trailing_stop =

min(current_bar_assumed_trailing_stop, today_close + atr_tsl_multiplier

* today_atr_tsl)

Position Sizing: Positions are binary (1 for long, -1 for short, 0 for flat).
P&L Calculation ( Strategy_Bar_Return ): Profit and loss are calculated on a bar-by-
bar basis.

On entry: P&L is from entry price to today_close .
On stop-loss: P&L is from entry price to exit_price_sl .
While holding: P&L is (today_close / prev_close) - 1  (or its inverse for shorts).



3.7. Plotting Results
The script generates a 4-panel plot:

Python

Aggregation to Daily Returns: Python

# --- Post-Loop Calculations ---

if not df_analysis.empty:

df_analysis['Date'] = df_analysis.index.date

daily_strat_returns = df_analysis.groupby('Date')

['Strategy_Bar_Return'].apply(lambda x: (1 + x).prod() - 1).fillna(0)

daily_bh_returns =

df_analysis['Close'].resample('D').last().pct_change().loc[daily_strat_r

eturns.index].fillna(0)

Performance Metrics Function ( calc_performance_metrics ): This function calculates
cumulative return, annualized return, annualized volatility, and Sharpe ratio based on the
daily aggregated returns. Python

# --- 4. Performance Metrics (based on Daily Aggregated Returns) ---

def calc_performance_metrics(returns_daily, name,

trading_days_per_year=TRADING_DAYS_PER_YEAR):

# ... (calculation of avg_daily_return, std_daily_return, ann_ret,

ann_vol, sharpe_ratio, cumulative_return_factor) ...

print(f"\n--- {name} ---")

print(f"Cumulative Return: {cumulative_return_factor:.2f}x")

# ... (other print statements) ...

1. Price, Channel, Trailing Stops (Intraday): Shows a subset of intraday bars (e.g., the
last day or last 300 bars) with the closing price, trading channel, and active trailing stops.

2. ATR and Compression State (Intraday): Displays the ATR, its moving average, and
shaded regions indicating when the range was compressed, for the same intraday
subset.

3. Strategy Position (Intraday): A step plot of the strategy's position (Long/Short/Flat) for
the intraday subset.

4. Cumulative Performance Comparison (Daily): Shows the cumulative returns of the
strategy (based on aggregated daily returns) versus a daily buy-and-hold benchmark, on
a log scale.



3.8. Unique Features & Notes

4. Volatility Momentum Strategy
4.1. Overview and Objective
Overview:

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 5 and not

daily_strat_returns.empty:

fig, axs = plt.subplots(4, 1, figsize=(15, 22), sharex=False)

# ... (logic for plotting subset_df for intraday plots) ...

# axs[0]: Price, Channel, Stops

# axs[1]: ATR, Compression State

# axs[2]: Strategy Position (Intraday)

# axs[3]: Cumulative Performance (Daily)

plt.tight_layout()

plt.show()

Intraday Operation: Specifically designed for high-frequency intraday data (e.g., 5-
minute bars).
Range Compression Trigger: Trades are only initiated if the market is assessed to be
in a state of low volatility (range compression) prior to the breakout.
Bidirectional Breakouts: Can trade both long and short breakouts from the channel.
Dynamic Trailing Stop: Uses an ATR-based trailing stop-loss that adjusts with market
volatility.
yfinance  Intraday Limitations: Users should be aware of yfinance 's limitations
regarding the historical depth of intraday data (typically 60 days using start/end dates,
hence the period  parameter is used for fetching recent data).
Timezone Handling: Includes logic to manage timezone localization for intraday
timestamps, crucial for consistency.
Execution Assumptions: Entry prices are estimated based on channel breakout levels
or the open of the breakout bar, which simplifies real-world slippage.
Performance Aggregation: Intraday bar returns are compounded daily for performance
reporting, providing a more standard view of strategy returns.
Plotting Intraday Detail: The plots attempt to show detailed intraday action for a subset
of the data due to the high number of bars.



This strategy operates on the principle that accelerating volatility, when combined with a
clear price trend, can signal trading opportunities. It calculates historical volatility and then
the momentum of this volatility (i.e., how quickly volatility itself is changing). Trades are
initiated in the direction of the prevailing price trend, but only when volatility is observed to be
increasing.

Objective:

The objective is to capitalize on periods where an increase in volatility supports an existing
price trend. The strategy aims to go long if the price is trending up and volatility is
accelerating, and go short if the price is trending down and volatility is accelerating. Positions
are managed with an ATR-based trailing stop-loss and are also exited if the volatility ceases
to accelerate.

4.2. Key Indicators and Components

The strategy utilizes the following indicators calculated from daily price data:

Daily Returns ( daily_return_col ): Standard percentage change in closing prices.
Python

df[daily_return_col] = df['Close'].pct_change()

Historical Volatility ( volatility_col ): Calculated as the rolling standard deviation of
daily returns. Python

# Historical Volatility (std dev of daily returns)

df[volatility_col] =

df[daily_return_col].rolling(window=vol_window).std()

Volatility Momentum ( vol_momentum_col ): The difference between current volatility
and volatility N periods ago (σt –σt–N ). Python

# Volatility Momentum (σt – σt–N)

df[vol_momentum_col] = df[volatility_col] -

df[volatility_col].shift(vol_momentum_window)

Price Trend SMA ( price_trend_sma_col ): A Simple Moving Average of closing prices
to determine the primary price trend. Python



4.3. Script Parameters
Key parameters for the strategy are defined at the beginning of the script:

Python

# Price Trend SMA

df[price_trend_sma_col] =

df['Close'].rolling(window=price_trend_sma_window).mean()

Average True Range (ATR - atr_col_name_sl ): Used for calculating the trailing stop-
loss. Python

# ATR for Stop Loss

df['H-L_sl'] = df['High'] - df['Low']

df['H-PC_sl'] = np.abs(df['High'] - df['Close'].shift(1))

df['L-PC_sl'] = np.abs(df['Low'] - df['Close'].shift(1))

df['TR_sl'] = df[['H-L_sl', 'H-PC_sl', 'L-PC_sl']].max(axis=1)

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()

# --- Parameters ---

ticker = "SOL-USD"          # Example ticker

start_date = "2021-01-01"

end_date = "2024-12-31"

# Volatility Calculation Parameters

vol_window = 30             # Rolling window for historical volatility

# Volatility Momentum Parameters

vol_momentum_window = 7     # Lookback period for volatility momentum (σt –

σt–N)

# Price Trend Parameters

price_trend_sma_window = 30 # SMA window for determining price trend

# ATR Trailing Stop Parameters

atr_window_sl = 14

atr_multiplier_sl = 1.0

# Trading days per year

TRADING_DAYS_PER_YEAR = 365 # Adjusted for crypto; 252 for stocks



4.4. Data Handling

4.5. Trading Logic (within the main backtesting loop)

The strategy iterates through each day in the df_analysis  DataFrame.

4.5.1. Signal Generation Conditions

Signals are based on the previous day's data ( prev_idx ):

4.5.2. Entry Conditions

Data Download: Daily OHLCV data is downloaded using yfinance . User preferences
for auto_adjust=False  and droplevel  for MultiIndex columns are applied. Python

# --- 1. Download Data ---

df_raw = yf.download(

[ticker], # Pass as list

start=start_date,

end=end_date,

auto_adjust=False, # Per user preference

progress=False

)

if isinstance(df_raw.columns, pd.MultiIndex):

df = df_raw.droplevel(level=1, axis=1) # Per user preference

else:

df = df_raw

df = df[['Open', 'High', 'Low', 'Close', 'Volume']].copy()

Volatility Accelerating: True if the prev_vol_momentum  is greater than 0. Python

is_vol_accelerating = pd.notna(prev_vol_momentum) and prev_vol_momentum

> 0

Price Trend: Determined by comparing the prev_close  to the prev_price_trend_sma .
Python

is_price_trending_up = pd.notna(prev_price_trend_sma) and prev_close >

prev_price_trend_sma

is_price_trending_down = pd.notna(prev_price_trend_sma) and prev_close <

prev_price_trend_sma



A new position (long or short) is considered if volatility is accelerating, and the price trend
aligns. Entries are made at today_open .

Python

4.5.3. Exit Conditions

Positions can be exited under two main conditions:

# (Inside backtesting loop, after stop-loss and strategy exit checks)

# 3. New Entry Signals / Holding Logic

target_signal_position = 0 # Default to flat

# ... (is_vol_accelerating, is_price_trending_up/down defined

above) ...

if is_vol_accelerating:

if is_price_trending_up:

target_signal_position = 1 # Signal to go Long

elif is_price_trending_down:

target_signal_position = -1 # Signal to go Short

# 3a. Change in position based on signal

if target_signal_position != current_day_assumed_position:

# ... (P&L for exiting old position if any) ...

current_day_assumed_position = target_signal_position

if current_day_assumed_position == 1: # Entering New Long

current_day_assumed_entry_price = today_open

# ... (set initial_ts and

current_day_assumed_trailing_stop) ...

elif current_day_assumed_position == -1: # Entering New

Short

current_day_assumed_entry_price = today_open

# ... (set initial_ts and

current_day_assumed_trailing_stop) ...

else: # Going/Staying Flat

current_day_assumed_entry_price = np.nan

current_day_assumed_trailing_stop = np.nan

# ... (P&L calculation for entry/flip) ...

action_taken_today = True

1. ATR Trailing Stop-Loss: This is checked first. If the stop is hit, the position is closed.

Python



The trailing stop is updated daily if the position is held:

Python

# 1. Check ATR Stop Loss (highest priority if in position)

if current_day_assumed_position == 1 and

pd.notna(current_day_assumed_trailing_stop) # ...

if today_low <= current_day_assumed_trailing_stop:

exit_price_sl = min(today_open,

current_day_assumed_trailing_stop)

# ... (P&L calculation, set position to 0) ...

action_taken_today = True

elif current_day_assumed_position == -1 and

pd.notna(current_day_assumed_trailing_stop) # ...

if today_high >= current_day_assumed_trailing_stop:

exit_price_sl = max(today_open,

current_day_assumed_trailing_stop)

# ... (P&L calculation, set position to 0) ...

action_taken_today = True

# (If holding position, in section 3b)

if current_day_assumed_position == 1:

current_day_assumed_trailing_stop =

max(current_day_assumed_trailing_stop, today_close - atr_multiplier_sl *

today_atr_sl)

elif current_day_assumed_position == -1:

current_day_assumed_trailing_stop =

min(current_day_assumed_trailing_stop, today_close + atr_multiplier_sl *

today_atr_sl)

2. Volatility No Longer Accelerating (Strategy Exit Rule): If an existing position is open
and the previous day's volatility momentum ( prev_vol_momentum ) is no longer positive
(i.e., volatility is not accelerating), the position is exited at today_open .

Python

# (After ATR stop check, if not stopped out)

else: # Not stopped out by ATR

# 2. Check Strategy Exit (Volatility no longer accelerating)

if current_day_assumed_position != 0 and pd.notna(prev_vol_momentum)

and prev_vol_momentum <= 0:

# ... (P&L calculation for exit at today_open, set position to



4.5.4. Position Sizing & P&L Calculation

4.6. Performance Evaluation

Daily strategy returns are used to calculate standard performance metrics.

0) ...

action_taken_today = True

Position Sizing: Positions are binary (1 for long, -1 for short, 0 for flat).
P&L Calculation ( Strategy_Daily_Return ): Profit and loss are calculated daily.

If stopped out: P&L from entry to stop price.
If strategy exit rule triggered: P&L from entry to today_open .
If position flipped (e.g., long to short): Combines P&L from exiting old position at
today_open  and P&L of new position from today_open  to today_close .
If new position entered from flat: P&L from today_open  to today_close .
If holding an existing position (and not exited): P&L from prev_close  to
today_close .

Cumulative Returns: Python

# --- Post-Loop Calculations ---

df_analysis['Strategy_Daily_Return'].fillna(0, inplace=True)

df_analysis['Cumulative_Strategy_Return'] = (1 +

df_analysis['Strategy_Daily_Return']).cumprod()

df_analysis['Cumulative_Buy_Hold_Return'] = (1 +

df_analysis[daily_return_col].fillna(0)).cumprod()

# ... (Alignment for Buy & Hold cumulative return) ...

Performance Metrics Function ( calc_performance_metrics ): This function calculates
and prints cumulative return, annualized return, annualized volatility, and Sharpe ratio for
both the strategy and a buy-and-hold benchmark. Python

# --- 4. Performance Metrics ---

def calc_performance_metrics(returns, name,

trading_days_per_year=TRADING_DAYS_PER_YEAR):

# ... (Check for sufficient data) ...

avg_daily_return = returns.mean()

std_daily_return = returns.std()

ann_ret = avg_daily_return * trading_days_per_year

ann_vol = std_daily_return * np.sqrt(trading_days_per_year)

sharpe_ratio = ann_ret / ann_vol if ann_vol > 0.00001 else np.nan



4.7. Plotting Results

The script generates a 5-panel plot for visual analysis of the strategy:

Python

4.8. Unique Features & Notes

cumulative_return_factor = (1 + returns).prod()

# ... (Print metrics) ...

1. Close Price, Trend SMA, and Trailing Stops: Displays the asset's closing price, the
price trend SMA, and active trailing stop levels.

2. Historical Volatility: Shows the calculated historical volatility over time.
3. Volatility Momentum: Plots the volatility momentum indicator and a zero line to easily

identify accelerating/decelerating volatility.
4. Strategy Position: A step plot indicating Long (1), Short (-1), or Flat (0) positions.
5. Cumulative Performance Comparison: Log-scaled chart comparing the strategy's

cumulative returns against a buy-and-hold benchmark.

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 1 :

fig, axs = plt.subplots(5, 1, figsize=(15, 25), sharex=True)

# axs[0]: Close Price, Trend SMA, Trailing Stops

# axs[1]: Historical Volatility

# axs[2]: Volatility Momentum

# axs[3]: Strategy Position

# axs[4]: Cumulative Performance

plt.tight_layout()

plt.show()

Dual Condition Entry: Requires both volatility acceleration and price trend alignment for
initiating trades.
Specific Exit Rule: In addition to ATR trailing stops, positions are exited if the primary
condition of accelerating volatility is no longer met.
Daily Timeframe: The strategy operates on daily data.
Parameterization: The windows for volatility calculation, momentum, price trend, and
ATR stops are all configurable.
Trailing Stop Mechanism: Employs an ATR-based trailing stop for risk management
once a position is opened.
NaN Handling: The backtesting loop includes checks for NaN values in critical indicators
to prevent errors and maintain position during data gaps.



5. Volatility Ratio Reversion with Trend Filter & ATR
Trailing Stop Strategy
5.1. Overview and Objective
Overview:

This strategy is based on the concept of volatility mean reversion, specifically looking at the
ratio of short-term historical volatility to long-term historical volatility. It hypothesizes that
when this ratio reaches extreme levels, it's likely to revert. The strategy combines these
volatility ratio signals with a trend filter to improve entry decisions.

Objective:

The primary objective is to:

5.2. Key Indicators and Components
The strategy relies on several indicators calculated from daily data:

Enter long positions when short-term volatility is significantly lower than long-term
volatility (ratio < lower_threshold ), suggesting volatility might expand, but only if the
price is in an uptrend.
Enter short positions when short-term volatility is significantly higher than long-term
volatility (ratio > upper_threshold ), suggesting volatility might contract, but only if the
price is in a downtrend. An ATR-based trailing stop-loss is used for risk management.

Daily Returns ( Daily_Return ): The percentage change in closing prices. Python

df['Daily_Return'] = df['Close'].pct_change()

Short-Term Historical Volatility ( short_vol_col_name ): Standard deviation of daily
returns over a short window. Python

df[short_vol_col_name] =

df['Daily_Return'].rolling(window=short_vol_window,

min_periods=short_vol_window).std()

Long-Term Historical Volatility ( long_vol_col_name ): Standard deviation of daily
returns over a longer window. Python

df[long_vol_col_name] =

df['Daily_Return'].rolling(window=long_vol_window,



5.3. Script Parameters

The following parameters are configurable at the beginning of the script:

Python

min_periods=long_vol_window).std()

Volatility Ratio ( ratio_col_name ): The ratio of short-term volatility to long-term
volatility. Python

df[ratio_col_name] = df[short_vol_col_name] / df[long_vol_col_name]

Trend Filter SMA ( trend_sma_col_name ): A Simple Moving Average of closing prices
used to determine the prevailing trend. Python

df[trend_sma_col_name] =

df['Close'].rolling(window=trend_sma_window).mean()

Average True Range (ATR - atr_col_name_sl ): Used for the trailing stop-loss
mechanism. Python

df['H-L_sl'] = df['High'] - df['Low']

df['H-PC_sl'] = np.abs(df['High'] - df['Close'].shift(1))

df['L-PC_sl'] = np.abs(df['Low'] - df['Close'].shift(1))

df['TR_sl'] = df[['H-L_sl', 'H-PC_sl', 'L-PC_sl']].max(axis=1)

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()

# --- Parameters ---

ticker = "BTC-USD"          # Example ticker

start_date = "2021-01-01"

end_date = "2024-12-31"

# Volatility Ratio Parameters

short_vol_window = 7

long_vol_window = 30

upper_threshold = 1.2       # Short if R > upper_threshold (and trend

allows)

lower_threshold = 0.8       # Long if R < lower_threshold (and trend allows)

# Trend Filter Parameters



(Note: TRADING_DAYS_PER_YEAR  is also defined in the script but not listed here as it's used in
the performance calculation function, which is standard across scripts).

5.4. Data Handling

5.5. Trading Logic (within the main backtesting loop)

The strategy logic iterates daily through the df_analysis  DataFrame. Trades are based on
the previous day's signals and executed at the current day's Open .

5.5.1. Signal Generation Conditions

Signals are determined based on the previous day's ( prev_idx ) Volatility Ratio ( R_prev )
and its relation to thresholds, combined with a trend filter.

trend_sma_window = 50       # SMA window for trend determination

# ATR Trailing Stop Parameters

atr_window_sl = 14

atr_multiplier_sl = 1.0

Data Download: Daily OHLCV data is fetched using yfinance . User preferences for
auto_adjust=False  and droplevel  (for MultiIndex columns when a single ticker is
provided as a list) are respected. Python

# --- 1. Download Data ---

df_raw = yf.download(

[ticker],

start=start_date,

end=end_date,

auto_adjust=False,

progress=False

)

if isinstance(df_raw.columns, pd.MultiIndex):

df = df_raw.droplevel(level=1, axis=1)

else:

df = df_raw

Volatility Signal ( vol_signal ): Python

# B. Determine Volatility Signal (if not stopped out)

vol_signal = 0

if pd.notna(R_prev):



5.5.2. Entry Conditions

If the current_target_position  is different from the active_position  (and not due to a
stop-loss on the current bar), a new position is considered. Entry occurs at today_open .

Python

if R_prev < lower_threshold:

vol_signal = 1  # Potential Long

elif R_prev > upper_threshold:

vol_signal = -1 # Potential Short

Trend Filter Application & Target Position ( current_target_position ): Python

# C. Apply Trend Filter & Determine Target Position

current_target_position = 0

if pd.notna(prev_trend_sma): # Ensure trend SMA is available

if vol_signal == 1 and prev_close > prev_trend_sma: # Long signal +

Uptrend

current_target_position = 1

elif vol_signal == -1 and prev_close < prev_trend_sma: # Short

signal + Downtrend

current_target_position = -1

# D. Handle Position Changes or Holding (if not stopped out)

if current_target_position != active_position:

# ... (P&L for exiting old position if any) ...

active_position = current_target_position # Assume new target position

if active_position == 1: # Entering New Long

current_entry_price = today_open

# ... (pnl_entry_hold calculation) ...

initial_ts = current_entry_price - atr_multiplier_sl * prev_atr_sl

active_trailing_stop = max(initial_ts, today_close -

atr_multiplier_sl * today_atr_sl)

entry_price = current_entry_price # Set entry price for this new

trade

elif active_position == -1: # Entering New Short

current_entry_price = today_open

# ... (pnl_entry_hold calculation) ...

initial_ts = current_entry_price + atr_multiplier_sl * prev_atr_sl

active_trailing_stop = min(initial_ts, today_close +



5.5.3. Exit Conditions

The primary exit mechanism is the ATR Trailing Stop-Loss.

atr_multiplier_sl * today_atr_sl)

entry_price = current_entry_price # Set entry price for this new

trade

else: # Going flat

active_trailing_stop = np.nan

entry_price = np.nan

# ... (Combine P&L if flip occurred) ...

ATR Trailing Stop-Loss Check (highest priority): Python

# A. Check Stop Loss First (if in a position)

if active_position == 1 and pd.notna(active_trailing_stop):

if today_low <= active_trailing_stop:

exit_price = min(today_open, active_trailing_stop)

pnl = (exit_price / entry_price) - 1

active_position = 0

entry_price = np.nan

stop_triggered_today = True

elif active_position == -1 and pd.notna(active_trailing_stop):

if today_high >= active_trailing_stop:

exit_price = max(today_open, active_trailing_stop)

pnl = -((exit_price / entry_price) - 1)

active_position = 0

entry_price = np.nan

stop_triggered_today = True

if stop_triggered_today:

active_trailing_stop = np.nan

Trailing Stop Adjustment (if holding a position and not stopped): Python

# (If holding existing position and not stopped, within section D)

elif active_position != 0: # Holding existing position

if active_position == 1:

# ... (pnl calculation for holding) ...

active_trailing_stop = max(active_trailing_stop, today_close -

atr_multiplier_sl * today_atr_sl)

elif active_position == -1:

# ... (pnl calculation for holding) ...



5.5.4. Position Sizing & P&L Calculation

5.6. Performance Evaluation

Standard performance metrics are computed using daily strategy returns.

active_trailing_stop = min(active_trailing_stop, today_close +

atr_multiplier_sl * today_atr_sl)

Exit due to Signal Change: If current_target_position  becomes 0 (e.g., trend filter
no longer aligns or vol_signal becomes neutral) or flips to the opposite direction, the
existing position is closed at today_open .

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
P&L Calculation ( Strategy_Daily_Return ): Calculated daily based on the outcome of
the bar.

If stopped out: P&L from original entry_price  to exit_price  (stop).
If position changed due to new signal (entry/flip/exit to flat):

pnl_exit : Calculated from entry_price  (or prev_close  if entry_price
was NaN for some reason) to today_open  for the old position.
pnl_entry_hold : Calculated from today_open  to today_close  for the new
position (if any).
Total pnl  for the day combines these appropriately for flips.

If holding: P&L from prev_close  to today_close .

Cumulative Returns: Python

df_analysis['Strategy_Daily_Return'].fillna(0, inplace=True)

df_analysis['Cumulative_Strategy_Return'] = (1 +

df_analysis['Strategy_Daily_Return']).cumprod()

df_analysis['Cumulative_Buy_Hold_Return'] = (1 +

df_analysis['Daily_Return'].fillna(0)).cumprod()

# ... (Alignment for Buy & Hold cumulative return) ...

Performance Metrics Function ( calc_performance_metrics ): Calculates and prints
cumulative return, annualized return, annualized volatility, and Sharpe ratio. Python

# --- 4. Performance Metrics (Simple) ---

def calc_performance_metrics(returns, name, trading_days_per_year=365):

# Defaulting to 365

# ... (calculations as in previous scripts) ...



5.7. Plotting Results

The script generates four plots to visualize the strategy:

Python

5.8. Unique Features & Notes

print(f"Cumulative Return: {cumulative_return_factor:.2f}x")

# ... (other print statements) ...

1. Close Price, Trend SMA, and Trailing Stops: Shows price, the trend-defining SMA,
and active trailing stop levels.

2. Volatility Ratio with Thresholds: Plots the calculated volatility ratio along with the
defined upper and lower threshold lines.

3. Strategy Position: A step plot indicating Long (1), Short (-1), or Flat (0) positions over
time.

4. Cumulative Performance Comparison: A log-scaled chart comparing the strategy's
cumulative returns to a buy-and-hold benchmark.

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 1:

# Plot 1: Close Price, Trend SMA, and Trailing Stops

plt.figure(figsize=(15, 6)) # ... (plotting code) ...

plt.show()

# Plot 2: Volatility Ratio with Thresholds

plt.figure(figsize=(15, 6)) # ... (plotting code) ...

plt.show()

# Plot 3: Strategy Position

plt.figure(figsize=(15, 4)) # ... (plotting code) ...

plt.show()

# Plot 4: Cumulative Performance Comparison

plt.figure(figsize=(15, 6)) # ... (plotting code) ...

plt.show()

Volatility Mean Reversion Focus: The core signal is derived from the ratio of short-term
to long-term volatility, expecting extremes in this ratio to revert.
Trend Confirmation: Trades are only taken if the prevailing price trend (defined by an
SMA) aligns with the direction implied by the volatility ratio signal.



6. Volatility-Clustering Reversion Strategy
6.1. Overview and Objective

Overview:

This strategy is built on the observation of volatility clustering, where periods of high volatility
tend to be followed by more high volatility, and periods of low volatility by low volatility.
However, after a sustained cluster of high-volatility days, this strategy anticipates a potential
(temporary) return to calmer conditions. It identifies such clusters and then makes a
contrarian bet on price mean-reversion, filtered by the overall market trend.

Objective:

The primary objective is to:

6.2. Key Indicators and Components

The strategy utilizes several indicators calculated from daily data:

Dual Thresholds: Uses distinct upper and lower thresholds for the volatility ratio to
signal potential short and long entries, respectively.
Daily Operation: The strategy analyzes data and makes decisions on a daily basis.
ATR Trailing Stop: Employs a standard ATR-based trailing stop for risk management of
open positions.
NaN Handling: The backtest loop includes checks for NaN values in critical indicators to
ensure robustness.

1. Detect a predefined number of consecutive "high-volatility" days.
2. After such a cluster, if the price moved down during the cluster, take a long position

(betting on a reversion upwards), provided the broader market trend is up.
3. Conversely, if the price moved up during the cluster, take a short position (betting on a

reversion downwards), provided the broader market trend is down. The strategy uses an
ATR-based trailing stop-loss for risk management.

Daily Returns ( daily_return_col ): Standard percentage change in closing prices.
Python

df[daily_return_col] = df['Close'].pct_change()

Annualized Historical Volatility ( hist_vol_col ): Rolling standard deviation of daily
returns, annualized. Python



df[hist_vol_col] = df[daily_return_col].rolling(window=vol_window).std()

* np.sqrt(TRADING_DAYS_PER_YEAR)

High-Volatility Day Detection ( is_high_vol_day_col ): A day is flagged as high
volatility if its hist_vol_col  exceeds a dynamic threshold (mean of historical volatility
plus a factor of its standard deviation over a vol_stats_window ). Python

df[mean_hist_vol_col] =

df[hist_vol_col].rolling(window=vol_stats_window).mean()

df[std_hist_vol_col] =

df[hist_vol_col].rolling(window=vol_stats_window).std()

df[is_high_vol_day_col] = df[hist_vol_col] > (df[mean_hist_vol_col] +

vol_cluster_threshold_factor * df[std_hist_vol_col])

Consecutive High-Volatility Days ( consecutive_high_vol_col ): Counts the number
of consecutive days flagged as Is_High_Vol_Day . Python

# Create groups for consecutive True/False in Is_High_Vol_Day

df['High_Vol_Group_ID'] = (df[is_high_vol_day_col] !=

df[is_high_vol_day_col].shift(1)).cumsum()

# Calculate cumulative count within each group

df[consecutive_high_vol_col] =

df.groupby('High_Vol_Group_ID').cumcount() + 1

# Reset count to 0 for days that are not high-vol

df.loc[~df[is_high_vol_day_col], consecutive_high_vol_col] = 0

Trend Filter SMA ( trend_filter_sma_col ): A Simple Moving Average of closing prices
to determine the overall market trend. Python

df[trend_filter_sma_col] =

df['Close'].rolling(window=trend_filter_sma_window).mean()

Average True Range (ATR - atr_col_name_sl ): Used for the trailing stop-loss. Python

df['H-L_sl'] = df['High'] - df['Low']

df['H-PC_sl'] = np.abs(df['High'] - df['Close'].shift(1))

df['L-PC_sl'] = np.abs(df['Low'] - df['Close'].shift(1))

df['TR_sl'] = df[['H-L_sl', 'H-PC_sl', 'L-PC_sl']].max(axis=1)

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()



6.3. Script Parameters

Configurable parameters are set at the beginning of the script:

Python

6.4. Data Handling

# --- Parameters ---

ticker = "EURUSD=X"

start_date = "2021-01-01"

end_date = "2024-12-31"

# Volatility Calculation

vol_window = 7              # Rolling window for historical volatility

# High-Volatility Day Detection

vol_stats_window = 30       # Window for rolling mean and std dev of

historical volatility

vol_cluster_threshold_factor = 1.0 # Hist_Vol > (Mean_Hist_Vol + N *

Std_Hist_Vol)

# Volatility Cluster

vol_cluster_days_trigger = 3 # Number of consecutive high-vol days to

trigger a signal

# Trend Filter Parameters

trend_filter_sma_window = 30 # SMA window for the overall trend filter

# ATR Trailing Stop Parameters

atr_window_sl = 14

atr_multiplier_sl = 2.0

TRADING_DAYS_PER_YEAR = 252 # Adjusted for crypto if detected

# ... (crypto check for TRADING_DAYS_PER_YEAR) ...

Data Download: Daily OHLCV data is downloaded using yfinance . User preferences
for auto_adjust=False  and droplevel  for MultiIndex columns are applied. Python

# --- 1. Download Data ---

df_raw = yf.download(

[ticker], start=start_date, end=end_date,

auto_adjust=False, progress=False



6.5. Trading Logic (within the main backtesting loop)

The strategy logic is processed daily. Trades are based on the previous day's conditions and
entered at the current day's Open .

6.5.1. Signal Generation Conditions

A trade signal is generated if the strategy is currently flat and specific conditions regarding
volatility clusters and price movement are met.

)

if df_raw.empty: raise SystemExit(f"No data for {ticker}.")

df = df_raw.droplevel(level=1, axis=1) if isinstance(df_raw.columns,

pd.MultiIndex) else df_raw

df = df[['Open', 'High', 'Low', 'Close', 'Volume']].copy()

Volatility Cluster Trigger: The primary trigger is observing vol_cluster_days_trigger
(e.g., 3) consecutive high-volatility days on the previous day. Python

# (Inside backtesting loop, if flat and not stopped out)

if current_day_assumed_position == 0: # Only consider new entries if

flat

if prev_consecutive_high_vol == vol_cluster_days_trigger:

# ... proceed to determine trade direction ...

Contrarian Price Movement Direction ( potential_trade_direction ): The strategy
then looks at the price movement during the detected N-day high-volatility cluster. The
price at the end of the cluster ( price_at_cluster_end , which is prev_idx 's close) is
compared to the price on the day before the cluster started. Python

idx_day_before_cluster_start_relative_to_i = i - 1 -

vol_cluster_days_trigger

if idx_day_before_cluster_start_relative_to_i >= 0:

day_before_cluster_starts_idx =

df_analysis.index[idx_day_before_cluster_start_relative_to_i]

price_at_cluster_end = df_analysis.at[prev_idx, 'Close']

price_before_cluster =

df_analysis.at[day_before_cluster_starts_idx, 'Close']

potential_trade_direction = 0

if pd.notna(price_before_cluster) and

pd.notna(price_at_cluster_end):

if price_at_cluster_end < price_before_cluster:



6.5.2. Entry Conditions

If trade_allowed  is true and a potential_trade_direction  is determined, a position is
entered at today_open .

Python

potential_trade_direction = 1  # Bet Long

elif price_at_cluster_end > price_before_cluster:

potential_trade_direction = -1 # Bet Short

Trend Filter Application ( trade_allowed ): The potential_trade_direction  is then
filtered by the overall market trend (based on prev_close  vs prev_trend_filter_sma ).
Python

trade_allowed = False

if potential_trade_direction == 1 and prev_close >

prev_trend_filter_sma: # Bet Long, Trend Up

trade_allowed = True

elif potential_trade_direction == -1 and prev_close <

prev_trend_filter_sma: # Bet Short, Trend Down

trade_allowed = True

if trade_allowed and potential_trade_direction != 0:

current_day_assumed_position = potential_trade_direction

current_day_assumed_entry_price = today_open # Enter at

today's open

if current_day_assumed_position == 1: # Long

pnl_for_day = (today_close /

current_day_assumed_entry_price) - 1

initial_ts = current_day_assumed_entry_price -

atr_multiplier_sl * prev_atr_sl

current_day_assumed_trailing_stop = max(initial_ts,

today_close - atr_multiplier_sl * today_atr_sl)

else: # Short

pnl_for_day = -((today_close /

current_day_assumed_entry_price) - 1)

initial_ts = current_day_assumed_entry_price +

atr_multiplier_sl * prev_atr_sl

current_day_assumed_trailing_stop = min(initial_ts,

today_close + atr_multiplier_sl * today_atr_sl)



6.5.3. Exit Conditions

The primary exit mechanism is the ATR Trailing Stop-Loss. There is no explicit rule to exit if
volatility calms down after entry; the trade is managed by the TSL.

action_taken_this_step = True # An entry action was

taken

ATR Trailing Stop-Loss Check (highest priority if in a position): Python

# 1. Check ATR Stop Loss

if current_day_assumed_position == 1 and

pd.notna(current_day_assumed_trailing_stop) # ...

if today_low <= current_day_assumed_trailing_stop:

exit_price_sl = min(today_open,

current_day_assumed_trailing_stop)

# ... (P&L calculation, set position to 0) ...

action_taken_this_step = True

elif current_day_assumed_position == -1 and

pd.notna(current_day_assumed_trailing_stop) # ...

if today_high >= current_day_assumed_trailing_stop:

exit_price_sl = max(today_open,

current_day_assumed_trailing_stop)

# ... (P&L calculation, set position to 0) ...

action_taken_this_step = True

if action_taken_this_step: # If stopped out

current_day_assumed_entry_price = np.nan

current_day_assumed_trailing_stop = np.nan

Trailing Stop Adjustment (if holding a position and not stopped out): Python

# (If holding a position and no stop/new entry on current bar)

if not action_taken_this_step and current_day_assumed_position != 0:

if current_day_assumed_position == 1:

# ... (P&L for holding) ...

current_day_assumed_trailing_stop =

max(current_day_assumed_trailing_stop, today_close - atr_multiplier_sl *

today_atr_sl)

elif current_day_assumed_position == -1:

# ... (P&L for holding) ...

current_day_assumed_trailing_stop =



6.5.4. Position Sizing & P&L Calculation

6.6. Performance Evaluation

Daily strategy returns are used for performance metric calculations.

6.7. Plotting Results
The script generates a 5-panel plot:

min(current_day_assumed_trailing_stop, today_close + atr_multiplier_sl *

today_atr_sl)

Position Sizing: Positions are binary (1 for long, -1 for short, 0 for flat).
P&L Calculation ( Strategy_Daily_Return ): Calculated daily.

On entry: P&L from today_open  to today_close .
If stopped out: P&L from entry price to stop-loss exit price.
If holding: P&L from prev_close  to today_close .

Cumulative Returns & Alignment: Python

# --- Post-Loop Calculations ---

df_analysis['Strategy_Daily_Return'].fillna(0, inplace=True)

df_analysis['Cumulative_Strategy_Return'] = (1 +

df_analysis['Strategy_Daily_Return']).cumprod()

# ... (Buy & Hold calculation and alignment) ...

Performance Metrics Function ( calc_performance_metrics ): Calculates cumulative
return, annualized return, annualized volatility, and Sharpe ratio. Python

# --- 4. Performance Metrics ---

def calc_performance_metrics(returns, name,

trading_days_per_year=TRADING_DAYS_PER_YEAR):

# ... (standard calculations as in previous scripts) ...

print(f"Cumulative Return: {cumulative_return_factor:.2f}x")

# ... (other print statements) ...

1. Close Price, Trend Filter SMA, and Trailing Stops.
2. Historical Volatility and the dynamic High-Volatility Threshold.
3. Consecutive High-Volatility Day Count with the trigger level highlighted.
4. Strategy Position (Long/Short/Flat).



Python

6.8. Unique Features & Notes

7. Volatility-Oscillator Divergence Strategy
7.1. Overview and Objective

Overview:

This strategy identifies potential trading opportunities by looking for divergences between the
price movement of an asset and the movement of a volatility oscillator. The volatility
oscillator is constructed as the Rate of Change (ROC) of historical volatility. The core idea is
that if price is trending in one direction, but the volatility oscillator is moving in the opposite
direction (diverging), it can signal a confirmation or strengthening of the price trend.

Objective:

5. Cumulative Performance Comparison (Strategy vs. Buy & Hold, log scale).

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 5:

fig, axs = plt.subplots(5, 1, figsize=(15, 25), sharex=True)

# axs[0]: Close Price, Trend Filter, Stops

# axs[1]: Historical Volatility & Threshold

# axs[2]: Consecutive High-Vol Days & Trigger

# axs[3]: Strategy Position

# axs[4]: Cumulative Performance

plt.tight_layout()

plt.show()

Volatility Cluster Detection: Identifies periods of sustained high volatility using a
dynamic threshold.
Contrarian Reversion Post-Cluster: Bets on a price reversion after the volatility cluster,
but this "contrarian" element is with respect to the price movement during the cluster.
Trend Confirmation: The contrarian reversion signal is filtered by the broader market
trend, adding a layer of confirmation.
Dynamic Threshold: The definition of a "high-volatility day" is adaptive, based on the
rolling mean and standard deviation of historical volatility.
Daily Timeframe: The strategy analyzes and trades on daily data.
ATR Trailing Stop: Standard risk management for open positions.



The objective is to:

7.2. Key Indicators and Components
The strategy relies on several indicators calculated from daily data:

Enter a long position when the price is making higher highs (or generally trending up),
the volatility oscillator is making lower highs (or generally trending down – a bullish
divergence), and the overall long-term market trend is also upwards.
Enter a short position when the price is making lower lows (or generally trending down),
the volatility oscillator is making higher lows (or generally trending up – a bearish
divergence), and the overall long-term market trend is also downwards. Trades are
managed with an ATR-based trailing stop-loss.

Daily Returns ( daily_return_col ): Standard percentage change in closing prices.
Python

df[daily_return_col] = df['Close'].pct_change()

Historical Volatility ( volatility_col ): Rolling standard deviation of daily returns.
Python

df[volatility_col] =

df[daily_return_col].rolling(window=vol_window).std()

Volatility Oscillator ( vol_osc_col ): The Rate of Change (ROC) of the historical
volatility. Python

df[vol_osc_col] =

df[volatility_col].pct_change(periods=vol_osc_roc_period) * 100

Price Change ( price_change_col ): The difference in closing price over a lookback
period, used for divergence detection. Python

df[price_change_col] =

df['Close'].diff(periods=divergence_price_lookback)

Volatility Oscillator Change ( vol_osc_change_col ): The difference in the volatility
oscillator's value over a lookback period, used for divergence detection. Python



7.3. Script Parameters

Key parameters for the strategy are defined at the beginning of the script:

Python

df[vol_osc_change_col] =

df[vol_osc_col].diff(periods=divergence_vol_osc_lookback)

Long-Term Trend SMA ( long_term_sma_col ): A Simple Moving Average of closing
prices to define the overall market trend. Python

df[long_term_sma_col] =

df['Close'].rolling(window=long_term_sma_window).mean()

Average True Range (ATR - atr_col_name_sl ): Used for calculating the trailing stop-
loss. Python

df['H-L_sl'] = df['High'] - df['Low']

df['H-PC_sl'] = np.abs(df['High'] - df['Close'].shift(1))

df['L-PC_sl'] = np.abs(df['Low'] - df['Close'].shift(1))

df['TR_sl'] = df[['H-L_sl', 'H-PC_sl', 'L-PC_sl']].max(axis=1)

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()

# --- Parameters ---

ticker = "ETH-USD"          # Example: "BTC-USD", "AAPL", "GOOGL"

start_date = "2021-01-01"

end_date = "2024-12-31"

# Volatility Calculation

vol_window = 30             # Rolling window for historical volatility

# Volatility Oscillator (ROC of Volatility)

vol_osc_roc_period = 7      # Period for ROC calculation on volatility

# Divergence Detection Lookbacks

divergence_price_lookback = 7       # For defining "price up/down" (Close_t

- Close_t-N)

divergence_vol_osc_lookback = 7   # For defining "vol-osc up/down" (VolOsc_t

- VolOsc_t-N)



7.4. Data Handling

7.5. Trading Logic (within the main backtesting loop)

The strategy iterates through each day in the df_analysis  DataFrame. Signals are based
on the previous day's data, and trades are executed at the current day's Open .

7.5.1. Signal Generation Conditions

Divergence conditions and the overall trend filter are checked based on the previous day's
data ( prev_idx ):

# Overall Trend Definition

long_term_sma_window = 30   # SMA window for determining overall long-term

trend

# ATR Trailing Stop Parameters

atr_window_sl = 14

atr_multiplier_sl = 1.0

# Trading days per year

TRADING_DAYS_PER_YEAR = 365 # Adjusted for crypto; 252 for stocks

Data Download: Daily OHLCV data is downloaded using yfinance . User preferences
for auto_adjust=False  and droplevel  for MultiIndex columns are applied. Python

# --- 1. Download Data ---

df_raw = yf.download(

[ticker],

start=start_date,

end=end_date,

auto_adjust=False,

progress=False

)

if isinstance(df_raw.columns, pd.MultiIndex):

df = df_raw.droplevel(level=1, axis=1)

else:

df = df_raw

df = df[['Open', 'High', 'Low', 'Close', 'Volume']].copy()

Divergence and Trend Conditions: Python



7.5.2. Entry Conditions

If the target_signal_position  (determined from the previous day's data) is different from
the current_day_assumed_position  (the position held at the start of the current day, before
any stop-loss action), a new trade is considered. Entry occurs at today_open .

Python

# Define conditions based on previous day's data

is_price_up          = prev_price_change > 0

is_vol_osc_down      = prev_vol_osc_change < 0

is_overall_uptrend   = prev_close > prev_long_term_sma

is_price_down        = prev_price_change < 0

is_vol_osc_up        = prev_vol_osc_change > 0

is_overall_downtrend = prev_close < prev_long_term_sma

Target Position Determination ( target_signal_position ): Python

# Determine target position from signals

if is_price_up and is_vol_osc_down and is_overall_uptrend:

target_signal_position = 1 # Long signal (Bullish divergence in

uptrend)

elif is_price_down and is_vol_osc_up and is_overall_downtrend:

target_signal_position = -1 # Short signal (Bearish divergence in

downtrend)

# (Inside backtesting loop, after stop-loss check)

# 2a. Change in position based on signal

if target_signal_position != current_day_assumed_position:

# ... (P&L for exiting old position if any) ...

current_day_assumed_position = target_signal_position # Assume new

position

if current_day_assumed_position == 1: # Entering New Long

current_day_assumed_entry_price = today_open

# ... (set initial_ts and current_day_assumed_trailing_stop) ...

elif current_day_assumed_position == -1: # Entering New Short

current_day_assumed_entry_price = today_open

# ... (set initial_ts and current_day_assumed_trailing_stop) ...

else: # Going/Staying Flat

current_day_assumed_entry_price = np.nan



7.5.3. Exit Conditions

The primary mechanism for exiting trades is the ATR Trailing Stop-Loss.

current_day_assumed_trailing_stop = np.nan

# ... (P&L calculation for entry/flip) ...

ATR Trailing Stop-Loss Check (highest priority): This is checked at the beginning of
each day's logic for any active position. Python

# 1. Check ATR Stop Loss

if current_day_assumed_position == 1 and

pd.notna(current_day_assumed_trailing_stop) # ...

if today_low <= current_day_assumed_trailing_stop:

exit_price_sl = min(today_open,

current_day_assumed_trailing_stop)

# ... (P&L calculation, set position to 0) ...

action_taken_this_step = True

elif current_day_assumed_position == -1 and

pd.notna(current_day_assumed_trailing_stop) # ...

if today_high >= current_day_assumed_trailing_stop:

exit_price_sl = max(today_open,

current_day_assumed_trailing_stop)

# ... (P&L calculation, set position to 0) ...

action_taken_this_step = True

if action_taken_this_step: # If stopped out

current_day_assumed_entry_price = np.nan

current_day_assumed_trailing_stop = np.nan

Trailing Stop Adjustment (if holding a position and not stopped): The stop is
adjusted at the end of the day based on today_close  and today_atr_sl . Python

# (If holding position and no signal change, in section 2b)

elif current_day_assumed_position != 0:

if current_day_assumed_position == 1:

current_day_assumed_trailing_stop =

max(current_day_assumed_trailing_stop, today_close - atr_multiplier_sl *

today_atr_sl)

elif current_day_assumed_position == -1:

current_day_assumed_trailing_stop =



7.5.4. Position Sizing & P&L Calculation

7.6. Performance Evaluation

Daily strategy returns are used to calculate standard performance metrics.

7.7. Plotting Results

min(current_day_assumed_trailing_stop, today_close + atr_multiplier_sl *

today_atr_sl)

Exit due to Signal Change: If target_signal_position  becomes 0 or flips to the
opposite direction, the existing position is closed at today_open .

Position Sizing: Positions are binary (1 for long, -1 for short, 0 for flat).
P&L Calculation ( Strategy_Daily_Return ): Profit and loss are calculated on a daily
basis.

If stopped out: P&L from entry to stop price.
If position flipped or exited due to new signal: P&L from exiting old position at
today_open , plus P&L of new position (if any) from today_open  to today_close .
If new position entered from flat: P&L from today_open  to today_close .
If holding an existing position (and not exited): P&L from prev_close  to
today_close .

Cumulative Returns & Alignment: Python

# --- Post-Loop Calculations ---

df_analysis['Strategy_Daily_Return'].fillna(0, inplace=True)

df_analysis['Cumulative_Strategy_Return'] = (1 +

df_analysis['Strategy_Daily_Return']).cumprod()

# ... (Buy & Hold calculation and alignment) ...

Performance Metrics Function ( calc_performance_metrics ): This function calculates
and prints cumulative return, annualized return, annualized volatility, and Sharpe ratio.
Python

# --- 4. Performance Metrics ---

def calc_performance_metrics(returns, name,

trading_days_per_year=TRADING_DAYS_PER_YEAR):

# ... (standard calculations as in previous scripts) ...

print(f"Cumulative Return: {cumulative_return_factor:.2f}x")

# ... (other print statements) ...



The script generates a 5-panel plot for visual analysis:

Python

7.8. Unique Features & Notes

8. Wavelet-Decomposed Volatility Bands Strategy
8.1. Overview and Objective

Overview:

1. Close Price, Long-Term SMA, and Trailing Stops.
2. Historical Volatility.
3. Volatility Oscillator (ROC of Volatility) with a zero line.
4. Strategy Position (Long/Short/Flat).
5. Cumulative Performance Comparison (Strategy vs. Buy & Hold, log scale).

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 1:

fig, axs = plt.subplots(5, 1, figsize=(15, 25), sharex=True)

# axs[0]: Price, Long-Term SMA, Trailing Stops

# axs[1]: Historical Volatility

# axs[2]: Volatility Oscillator

# axs[3]: Strategy Position

# axs[4]: Cumulative Performance

plt.tight_layout()

plt.show()

Divergence Trading: Leverages divergences between price momentum and volatility
oscillator momentum as the primary signal.
Trend Confirmation: Divergence signals are only traded if they align with the broader
market trend defined by a long-term SMA. This aims to filter out divergences that might
be false signals against the dominant trend.
Volatility ROC: Uses the Rate of Change of historical volatility as the oscillator, providing
a measure of the speed at which volatility is changing.
Daily Timeframe: The strategy is designed for daily data.
ATR Trailing Stop: Standard risk management for open positions.
Parameter Sensitivity: The lookback periods for volatility, the oscillator, divergence
detection, and the trend SMA are key parameters that can influence performance.



This strategy employs wavelet decomposition, a signal processing technique, to analyze the
price series. It decomposes the price into different frequency components. By reconstructing
a signal using only selected high-frequency detail coefficients, the strategy aims to isolate
the more rapid oscillations or "noise" component of the price action. Volatility bands are then
constructed around a moving average of the price, with their width determined by this
reconstructed high-frequency signal.

Objective:

The primary objective is to trade breakouts of these wavelet-derived volatility bands. The
rationale is that the reconstructed high-frequency signal provides a dynamic measure of
recent volatility, and breaks beyond bands scaled by this measure can indicate significant
price moves. The strategy enters long on an upward breakout and short on a downward
breakout, with positions managed by an ATR-based trailing stop-loss.

8.2. Key Concepts: Wavelet Decomposition

Wavelet decomposition breaks down a time series (in this case, closing prices) into different
frequency components. This is done by applying a chosen wavelet function (e.g., 'db4' -
Daubechies 4) at multiple levels.

This strategy focuses on reconstructing a signal using only some of the highest frequency
detail coefficients (e.g., cD1  and/or cD2 ) to capture the "volatility" or "noise" aspect of the
price.

8.3. Key Indicators and Components

The strategy relies on the following calculated series from daily data:

Approximation Coefficients (cA): Represent the low-frequency, smoother part of the
signal at each decomposition level.
Detail Coefficients (cD): Represent the high-frequency parts of the signal. cD1
captures the highest frequencies, cD2  the next highest, and so on.

Wavelet Decomposition & High-Frequency Reconstruction (hf_recon_col_name): The
closing price series is decomposed using pywt.wavedec. Then, a new signal is
reconstructed using only the selected high-frequency detail coefficients specified in
wavelet_recon_hf_levels. Python

# Step 2.1: Wavelet Decomposition and High-Frequency Reconstruction

price_series = df['Close'].dropna()

# ... (data length check) ...

coeffs = pywt.wavedec(price_series, wavelet_type,

level=wavelet_decomp_level)



# Create a zeroed-out coefficient list structure for reconstruction

coeffs_hf_only_template = []

for c_arr in coeffs:

coeffs_hf_only_template.append(np.zeros_like(c_arr))

# Populate with selected high-frequency detail coefficients

# coeffs list is [cA_n, cD_n, cD_n-1, ..., cD_1]

# cD_k corresponds to coeffs[-(k)]

num_coeffs_arrays = len(coeffs)

for hf_level_idx in wavelet_recon_hf_levels: # 1-based for cD1, cD2

coeff_array_index = -hf_level_idx

if 0 < hf_level_idx < num_coeffs_arrays :

coeffs_hf_only_template[coeff_array_index] =

coeffs[coeff_array_index]

# ... (warning if index out of bounds) ...

hf_reconstructed_signal_raw = pywt.waverec(coeffs_hf_only_template,

wavelet_type)

# ... (Alignment logic for hf_reconstructed_aligned with

price_series.index) ...

df.loc[price_series.index, hf_recon_col_name] = hf_reconstructed_aligned

df[hf_recon_col_name] = df[hf_recon_col_name].fillna(0)

Band Center Line ( center_line_col_name ): A simple moving average of the closing
prices. Python

# Step 2.2: Calculate Bands

df[center_line_col_name] =

df['Close'].rolling(window=band_center_ma_window).mean()

Wavelet Volatility Bands (upper_band_col_name, lower_band_col_name): The bands
are created by adding/subtracting a multiple of the absolute value of the reconstructed
high-frequency signal from the center line. Python

df[upper_band_col_name] = df[center_line_col_name] + band_hf_multiplier

* np.abs(df[hf_recon_col_name])

df[lower_band_col_name] = df[center_line_col_name] - band_hf_multiplier

* np.abs(df[hf_recon_col_name])

Average True Range (ATR - atr_col_name_sl ): Used for the trailing stop-loss. Python



8.4. Script Parameters

Key parameters are defined at the beginning of the script:

Python

8.5. Data Handling

# Step 2.3: ATR for Stop Loss

df['H-L_sl'] = df['High'] - df['Low']

# ... (TR calculation) ...

df[atr_col_name_sl] = df['TR_sl'].rolling(window=atr_window_sl).mean()

# --- Parameters ---

ticker = "BTC-USD"

start_date = "2021-01-01"

end_date = "2024-12-31"

# Wavelet Parameters

wavelet_type = 'db4'        # Example: 'db1'-'db20', 'sym2'-'sym20', etc.

wavelet_decomp_level = 3    # Level of decomposition

wavelet_recon_hf_levels = [1] # Detail coefficient levels to reconstruct (1-

indexed for cD1)

# Volatility Band Parameters

band_center_ma_window = 7   # Moving average window for the band's center

band_hf_multiplier = 1.5    # Multiplier for the abs reconstructed HF signal

for band width

# ATR Trailing Stop Parameters

atr_window_sl = 14

atr_multiplier_sl = 1.0

Data Download: Daily OHLCV data is downloaded via yfinance , with user preferences
for auto_adjust=False  and droplevel  applied. Python

# --- 1. Download Data ---

df_raw = yf.download(

[ticker],

start=start_date,

end=end_date,

auto_adjust=False,



8.6. Trading Logic (within the main backtesting loop)
The strategy processes data daily. Signals are derived from the previous day's band levels,
and trades are executed at the current day's Open  or the breakout level.

8.6.1. Signal Generation Conditions (Breakouts)

Breakouts are detected if the current day's Open  price crosses beyond the previous day's
upper or lower wavelet band.

8.6.2. Entry Conditions

If a breakout occurs and the strategy is either flat or in an opposing position, a new position
is entered.

Python

progress=False

)

# ... (droplevel and column selection) ...

Data Length Check for Wavelets: A basic check is performed to ensure there's enough
data for the specified wavelet type and decomposition level. Python

if len(price_series) < pywt.Wavelet(wavelet_type).dec_len *

(2**wavelet_decomp_level):

raise SystemExit(...)

Upward Breakout (Potential Long): today_open > prev_upper_band  when
prev_close <= prev_upper_band .
Downward Breakout (Potential Short): today_open < prev_lower_band  when
prev_close >= prev_lower_band .

# (Inside backtesting loop, after stop-loss check)

# B. Check for New Entry Signals (Breakouts)

target_position_based_on_signal = active_position # Assume no change

if prev_close <= prev_upper_band and today_open > prev_upper_band: #

Upward breakout

if active_position != 1 : # If flat or short, consider long

target_position_based_on_signal = 1

elif prev_close >= prev_lower_band and today_open < prev_lower_band: #

Downward breakout



The entry price ( current_entry_price ) is taken as the breakout level ( prev_upper_band
or prev_lower_band ) or today_open  if the open gapped beyond the band.

8.6.3. Exit Conditions

The primary exit is via an ATR Trailing Stop-Loss.

if active_position != -1: # If flat or long, consider short

target_position_based_on_signal = -1

# Handle Position Changes

if target_position_based_on_signal != active_position:

# ... (P&L for exiting old position if any) ...

active_position = target_position_based_on_signal

if active_position == 1: # Entering new Long

current_entry_price = max(today_open, prev_upper_band) # Enter

at open or breakout point

# ... (P&L calculation, set initial_ts and active_trailing_stop)

...

entry_price = current_entry_price

elif active_position == -1: # Entering new Short

current_entry_price = min(today_open, prev_lower_band) # Enter

at open or breakout point

# ... (P&L calculation, set initial_ts and active_trailing_stop)

...

entry_price = current_entry_price

# ... (Combine P&L if flip occurred) ...

ATR Trailing Stop-Loss Check (highest priority): Python

# A. Check Stop Loss

if active_position == 1 and pd.notna(active_trailing_stop) and

pd.notna(entry_price):

if today_low <= active_trailing_stop:

exit_price = min(today_open, active_trailing_stop)

# ... (P&L calculation, set position to 0) ...

stop_triggered_today = True

elif active_position == -1 and pd.notna(active_trailing_stop) and

pd.notna(entry_price):

if today_high >= active_trailing_stop:

exit_price = max(today_open, active_trailing_stop)

# ... (P&L calculation, set position to 0) ...

stop_triggered_today = True



8.6.4. Position Sizing & P&L Calculation

8.7. Performance Evaluation

Daily strategy returns are used to calculate standard performance metrics.

if stop_triggered_today:

active_trailing_stop = np.nan

entry_price = np.nan

Trailing Stop Adjustment (if holding and not stopped): The stop is updated daily
based on today_close  and today_atr_sl . Python

# (If holding existing position and not stopped)

elif active_position != 0 and pd.notna(active_trailing_stop):

if active_position == 1:

active_trailing_stop = max(active_trailing_stop, today_close -

atr_multiplier_sl * today_atr_sl)

elif active_position == -1:

active_trailing_stop = min(active_trailing_stop, today_close +

atr_multiplier_sl * today_atr_sl)

Exit due to No New Signal: If target_position_based_on_signal  becomes 0 (e.g.,
price re-enters bands without a new breakout signal in the opposite direction), any
existing position is closed at today_open .

Position Sizing: Binary (1 for long, -1 for short, 0 for flat).
P&L Calculation ( Strategy_Daily_Return ): Calculated daily based on the day's
outcome.

If stopped out: P&L from entry to stop price.
If position changed (entry/flip/exit to flat): Combines P&L from exiting the old
position at today_open  and P&L of the new position (if any) from entry to
today_close .
If holding an existing position: P&L from prev_close  to today_close .

Cumulative Returns & Alignment: Python

# --- Post-Loop Calculations ---

df_analysis['Strategy_Daily_Return'].fillna(0, inplace=True)

df_analysis['Cumulative_Strategy_Return'] = (1 +



8.8. Plotting Results
The script generates a 4-panel plot:

Python

8.9. Unique Features & Notes

df_analysis['Strategy_Daily_Return']).cumprod()

# ... (Buy & Hold calculation and alignment) ...

Performance Metrics Function ( calc_performance_metrics ): Calculates and prints
cumulative return, annualized return, annualized volatility, and Sharpe ratio. Python

# --- 4. Performance Metrics (Simple) ---

def calc_performance_metrics(returns, name, trading_days_per_year=365):

# Defaulting to 365

# ... (standard calculations as in previous scripts) ...

print(f"Cumulative Return: {cumulative_return_factor:.2f}x")

# ... (other print statements) ...

1. Price, Wavelet Bands, Center Line, and Trailing Stops.
2. Reconstructed High-Frequency Signal: The wavelet-derived HF component used for

band width.
3. Strategy Position (Long/Short/Flat).
4. Cumulative Performance Comparison (Strategy vs. Buy & Hold, log scale).

# --- 5. Plotting ---

if not df_analysis.empty and len(df_analysis) > 1:

fig, axs = plt.subplots(4, 1, figsize=(15, 22), sharex=True)

# axs[0]: Price, Wavelet Bands, Center Line, Stops

# axs[1]: Reconstructed HF Signal

# axs[2]: Strategy Position

# axs[3]: Cumulative Performance

plt.tight_layout()

plt.show()

Wavelet-Based Volatility: Uses wavelet decomposition to isolate high-frequency
components as a basis for volatility band construction, offering a different perspective
than traditional ATR or standard deviation bands.
Adaptive Band Width: The width of the bands dynamically changes based on the
magnitude of the reconstructed high-frequency signal.



Breakout Strategy: Trades breakouts of these dynamically adjusting bands.
Parameter Choices: The choice of wavelet_type , wavelet_decomp_level , and
wavelet_recon_hf_levels  significantly impacts the nature of the reconstructed HF
signal and thus the bands. These require careful consideration and possibly
experimentation.
PyWavelets  Dependency: Requires the PyWavelets  library.
Data Length: Wavelet decomposition, especially at higher levels, requires a sufficient
amount of data.
Daily Timeframe: Operates on daily data.


